Data analysis

Table of contents

I Calculations in Matrix Algebra

1. Course 1 : Calculations in Matrix Algebra

1.1. Matrix Overview

Definition

A matrix is a rectangular array of numbers arranged in rows and columns. For example, a matrix A of size $m \times n$ has m rows and n columns:

$$
A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.
$$

Note:Vector Representation

A vector is a special type of matrix with only one column (column vector) or one row (row vector). For example, the column vector X , representing variables in regression, is expressed as :

$$
X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.
$$

 \mathcal{L}

Types of Matrices

- $\,$ *Row Matrix:* A matrix with only one row $(1 \times n).$

$$
A = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}.
$$

- Column Matrix A matrix with only one column ($m \times 1$).

$$
B = \begin{bmatrix} 5 \\ 6 \\ 7 \\ 8 \end{bmatrix}.
$$

- **Square Matrix:** A matrix with the same number of rows and columns $(n \times n)$.

$$
C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.
$$

- *Zero Matrix:* A matrix where all elements are zero.

$$
D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

- *Diagonal Matrix*: A square matrix where all the non-diagonal elements are zero.

 θ -01 $E=|0|$ $|0|$. $\overline{3}$ $\overline{0}$ θ $\overline{4}$

- *Identity Matrix:* A square matrix with ones on the diagonal and zeros elsewhere.

$$
I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
$$

- *triangular matrix* is a type of square matrix where either all the entries below or above the main diagonal are zero. There are two types of triangular matrices:
- In an *upper triangular matrix*, all the elements below the main diagonal are zero. Formally, a matrix A is upper triangular if:

 $a_{ii} = 0$ for $i > j$. $F = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$.

- In *a lower triangular matrix*, all the elements above the main diagonal are zero. Formally, a matrix A is lower triangular if: $a_{ij} = 0$ for $i < j$.

 $G = \begin{bmatrix} 7 & 0 & 0 \\ 8 & 9 & 0 \\ 10 & 11 & 12 \end{bmatrix}.$

Definition: Equality of Matrices

Two matrices A and B are said to be equal, denoted $A = B$, if:

- They have the same number of rows and columns.

For every element a_{ij} in matrix A and the corresponding element b_{ij} in matrix B , it holds that $a_{ij} = b_{ij}$ for all i and j .

Let:

 $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$

Both matrices A and B are 2×3 , and all corresponding elements match:

 $A = B$.

1.2. Basic matrix operations

Addition and substraction of matrices

Two matrices of the same size can be added element-wise.

$$
C = A + B \implies c_{ij} = a_{ij} + b_{ij}.
$$

Properties:

- *Commutative* Law:

 $A + B = B + A$.

- *Associative* Law:

 $A + (B + C) = (A + B) + C = A + B + C.$

- A + (-A) = 0 (where –A is the matrix composed of –aij as elements and 0 is a matrix with all elements are equal to 0).

Matrix Multiplication

- A matrix can be multiplied by a scalar (a single number).

 $B = kA \implies b_{ij} = k \cdot a_{ij}.$

- The product of two matrices A (size $m \times n$) and B (size $n \times p$) is defined as:

 $C = AB \implies c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$

Properties :

- *Distributive Property of Scalar Multiplication:* For any scalar k and matrices A and B,

 $k(A + B) = kA + kB$.

- *Distributive Property of Scalars over Matrices:* For any scalars k and g and matrix A,

 $(k+g)A = kA + gA.$

- *Scalar Multiplication with Matrix Product:* For any scalar k and matrices A and B,

 $k(AB) = (kA)B = A(kB).$

- *Associative Property of Scalar Multiplication:* For any scalars k and and matrix A,

 $k(gA) = (kg)A.$

Example:Matrix calcul

See exercise 1 of TD

Definition: Matrix transpose

The transpose of a matrix A is obtained by flipping it over its diagonal.

Definition: Determinant of a matrix

A scalar value that can be computed from the elements of a square matrix, denoted as $\det(A)$ or $|A|$.

The determinant of a square matrix A is a scalar value that can be computed from its elements.

- For a 2×2 matrix:

$$
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies \det(A) = ad - bc.
$$

- For larger matrices, the determinant can be computed using various methods, including cofactor expansion; such as a 3×3 matrix:

$$
A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \implies \det(A) = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}
$$

which expands to:

$$
\det(A) = a(ei - fh) - b(di - fg) + c(dh - eg).
$$

Consider the 3×3 matrix:

$$
A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & 0 \\ 1 & 4 & 2 \end{pmatrix}.
$$

To find $det(A)$, we use cofactor expansion along the first row:

$$
det(A) = 2\begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} - 0\begin{vmatrix} 3 & 0 \\ 1 & 2 \end{vmatrix} + 1\begin{vmatrix} 3 & 1 \\ 1 & 4 \end{vmatrix}.
$$

Simplifying further:

 $det(A) = 2(1 \times 2 - 0 \times 4) + 1(3 \times 4 - 1 \times 1) = 2(2) + 1(12 - 1) = 4 + 11 = 15.$

Definition: Matrix Inversion

The inverse of a matrix satisfies the equation:

$$
AA^{-1} = A^{-1}A = I,
$$

where I is the identity matrix.

The inverse of a matrix A of size $n \times n$ can be calculated using the formula:

$$
A^{-1} = \frac{1}{\det(A)} \cdot \text{adj}(A),
$$

where $\det(A)$ is the determinant of A and $\det(A)$ is the adjugate matrix (the transpose of the *cofactor matrix of A*).

Example:Calcul of the inverse

Consider the following 3×3 matrix A:

$$
A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & 0 \\ 1 & 4 & 2 \end{pmatrix}.
$$

1-We previously computed the determinant of A:

 $det(A) = 15.$

2-To compute the adjugate, we need to calculate the cofactors of each element of A. The cofactor C_{ij} is given by:

$$
C_{ij} = (-1)^{i+j} \cdot \det(M_{ij}),
$$

where M_{ij} is the minor matrix formed by deleting the i-th row and j-th column of A.

- For element $a_{11} = 2$, the minor matrix is:

$$
M_{11} = \begin{pmatrix} 1 & 0 \\ 4 & 2 \end{pmatrix}
$$
, $det(M_{11}) = (1 \times 2 - 0 \times 4) = 2$

Thus, $C_{11} = (+1) \times 2 = 2$.

- For element $a_{12} = 0$, the minor matrix is:

$$
M_{12} = \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}, \quad \det(M_{12}) = (3 \times 2 - 0 \times 1) = 6.
$$

Thus, $C_{12} = (-1) \times 6 = -6$.

- For element $a_{13} = 1$, the minor matrix is:

$$
M_{13} = \begin{pmatrix} 3 & 1 \\ 1 & 4 \end{pmatrix}
$$
, $det(M_{13}) = (3 \times 4 - 1 \times 1) = 11$.

We repeat this process for all elements of A, resulting in the cofactor matrix:

3-The adjugate matrix is the transpose of the cofactor matrix:

Adjugate Matrix =

\n
$$
\begin{pmatrix}\n2 & 4 & -1 \\
-6 & 3 & 3 \\
11 & -8 & 2\n\end{pmatrix}
$$

4-Finally, the inverse of A is:

$$
A^{-1} = \frac{1}{\det(A)} \cdot \text{adj}(A) = \frac{1}{15} \cdot \begin{pmatrix} 2 & 4 & -1 \\ -6 & 3 & 3 \\ 11 & -8 & 2 \end{pmatrix}.
$$