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PREFACE

THE FIFTH EDITION OF ECONOMETRIC ANALYSIS

Econometric Analysis is intended for a one-year graduate coursc in econometrics for
social scientists. The prercquisites for this coursc should include calculus, mathematical
statistics,and an introduction to econometrics at the level of, say. Gujarati’s Basic Econo-
metrics (McGraw-Hill. 1995) or Wooldridge's ntroductory Econometrics: A Modern
Approach [South-Western (2000}]. Sclf-contained (for our purposes) summaries of the
matrix algebra. mathematical statistics, and statistical thcory used later in the book arc
given in Appendices A through D. Appendix E contains a description of numerical
methods that will be usetul to practicing econometricians. The formal presentation of
econometrics begins with discussion of a fundamental pillar. the linear multiple regres-
sion modcl. in Chapters 2 through 8. Chapters 9 through 15 present familiar extensions
of the single lincar equation model. including nonlincar regression. pancl data models,
the gencralized regression model. and systems of equations. The linear model is usually
not the sole technique used in most of the contemporary literature. In view of this, the
(expanding) sccond half of this book is devoted to topics that will cxtend the linear
regression model in many directions. Chapters 16 through 18 present the techniques
and underlying theory of estimation in econometrics, including GMM and maximum
likelihood estimation methods and simulation based techniques. We end in the last four
chapters. 19 through 22, with discussions of current topics in applied econometrics, in-
cluding time-series analysis and the analysis of discrete choice and limited dependent
variable models.

This book has two objectives. The first is to introduce students to applied econo-
metrics, including basic techniques in regression analysis and some of the rich variety
of models that are used when the lincar model proves inadequate or inappropriate.
The second is to present students with sufficient theoretical background that they will
recognize new variants of the models learned about here as merely natural extensions
that fit within a common body of principles. Thus. [ have spent what might seem to be
alarge amount of effort explaining the mechanics of GMM estimation. nonlinear least
squares, and maximum likelihood estimation and GARCH modcls. To meet the second
objective, this book also contains a fair amount of theoretical material, such as that on
maximum likelihood estimation and on asymptotic results for regression models. Mod-
ern software has made complicated modeling very easy to do, and an understanding of
the underlying thecory is important.

I had several purposes in undertaking this revision. As in the past, readers continue
to send me interesting ideas for my “next edition.” It is impossible to use them all,
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of course. Because the five volumes of the Handbook of Econometrics and two of the
Handbook of Applied Econometrics alrcady run to over 4,000 pages, it is also unneces-
sary. Nonetheless, this revision is appropriate for several reasons. First, there are new
and intcresting devclopments in the field. particularly in the areas of microeconometrics
(panel data, models for discrete choice) and, of course, in time series, which continues
its rapid development. Second. I have taken the opportunity to continue fine-tuning the
text as the experience and shared wisdom of my readers accumulates in my files. For this
revision, that adjustment has entailed a substantial rearrangement of the material—the
main purpose of that was to allow me to add the new material in a more compact and
orderly way than I could have with the table of contents in the 4th edition. The litera-
ture in cconometrics has continued to cvolve, and my third objective is to grow with it.
This purpose is inherently difficult to accomplish in a textbook. Most of the literature is
written by professionals for other professionals, and this textbook is written for students
who are in the early stages of their training. But I do hope to provide a bridge to that
literature, both theoretical and applied.

This book is a broad survey of the field of econometrics. This field grows con-
tinually, and such an effort becomes increasingly difficult. (A partial list of journals
devoted at least in part, if not completely. to econometrics now includes the Journal
of Applied Econometrics, Journal of Econometrics, Econometric Theory, Econometric
Reviews, Journal of Business and Economic Statistics, Empirical Economics, and Econo-
metrica.) Still, my view has always been that the serious student of the field must start
somewhere, and one can successfully scek that objective in a single textbook. This text
attempts to survey, at an entry level. enough of the ficlds in econometrics that a student
can comfortably move from here to practice or more advanced study in one or more
specialized areas. At the same time, | have tried to present the material in sufficient
generality that the reader is also able to appreciate the important common foundation
of all these fields and to use the tools that they all employ.

There are now quite a few recently published texts in econometrics. Several have
gathered in compact, clegant treatiscs. the increasingly advanced and advancing theo-
retical background of econometrics. Others, such as this book, focus more attention on
applications of econometrics. One feature that distinguishes this work from its prede-
cessors is its greater emphasis on nonlinear models. [Davidson and MacKinnon (1993)
is a noteworthy, but morc advanced. exception.] Computer software now in wide use
has made estimation of nonlinear models as routine as estimation of linear ones, and the
recent literature reflects that progression. My purpose is to provide a textbook treat-
ment that is in line with current practice. The book concludes with four lengthy chapters
on time-series analysis, discrete choice models and limited dependent variable models.
These nonlinear models are now the staples of the applied econometrics literature. This
book also contains a fair amount of material that will extend beyond many first courses
in econometrics, including, perhaps, the aforementioned chapters on limited dependent
variables. the section in Chapter 22 on duration models, and some of the discussions
of time series and panel data models. Once again. [ have included these in the hope of
providing a bridge to the professional literature in these areas.

[ have had one overriding purpose that has motivated all five editions of this work.
For the vast majority of readers of books such as this, whose ambition is to use, not
develop econometrics, I believe that it is simply not sufficient to recite the theory of
estimation, hypothesis testing and econometric analysis. Understanding the often subtle
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background theory is extremely important. But, at the end of the day, my purpose in
writing this work. and for my continuing efforts to update it in this now fifth edition,
is to show readers how to do econometric analysis. I unabashedly accept the unflatter-
ing assessment of a correspondent who once likened this book to a “user’s guide to
econometrics.”

SOFTWARE AND DATA

There are many computer programs that are widely used for the computations described
in this book. All were written by econometricians or statisticians, and in general, all
are regularly updated to incorporate new developments in applied econometrics. A
sampling of the most widely used packages and Internet home pages where you can
find information about them arc:

E-Views WWW.eviews.com (OMS, Irvine, Calif.)

Gauss www.aptech.com (Aptech Systems. Kent, Wash.)
LIMDEP www.limdep.com (Econometric Software, Plainview, N.Y.)
RATS www.estima.com (Estima, Evanston, IlL.)

SAS WWW.Sas.com (SAS. Cary, N.C.)

Shazam shazam.econ.ubc.ca {Ken White, UBC, Vancouver, B.C.)
Stata www.stata.com (Stata, College Station, Tex.)

TSP www.tspintl.com (TSP International. Stanford. Calif.)

Programs vary in size. complexity, cost, thc amount of programming required of the user,
and so on. Journals such as The American Statistician, The Journal of Applied Fcono-
metrics, and The Journal of Economic Surveys regularly publish reviews of individual
packages and comparative surveys of packages. usually with reference to particular
functionality such as panel data analysis or forecasting.

With only a few exceptions, the computations described in this book can be carried
out with any of these packages. We hesitate to link this text to any of them in partic-
ular. We have placed for gencral access a customized version of LIMDEP, which was
also written by the author, on the website for this text. www.prenhall.com/greene.
LIMDEP programs used for many of the computations are posted on the sites as well.

The data sets used in the examples are also on the website. Throughout the text,
these data sets are referred to “TableFn.m.” for cxample Table F4.1. The F refers to
Appendix F at the back of the text, which contains descriptions of the data sets. The
actual data are posted on the website with the other supplementary materials for the
text. (The data sets are also replicated in the system format of most of the commonly
used econometrics computer programs. including in addition to LIMDEP, SAS, TSP,
SPSS, E-Views, and Stata, so that you can easily import them into whatever program
vou might be using.)

I'should also note, there are now thousands of interesting websites containing soft-
ware, data sets, papers, and commentary on cconometrics. It would be hopeless to
attempt any kind of a survey here. But, I do note one which is particularly agree-
ably structured and well targeted for readers of this book, the data archive for the
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Journal of Applied Economerrics. This journal publishes many papers that are precisely
at the right level for rcaders of this text. They have archived all the nonconfidential
data scts used in their publications since 1994. This uscful archive can be found at
http://qed.econ.queensu.ca/jae/.
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A

1
INTRODUCTION

LV VG

ECONOMETRICS

In the first issue of Econometrica, the Econometric Society stated that

its main object shall be to promote studies that aim at a unification of the
theoretical-quantitative and the empirical-quantitative approach to economic
problems and that are penetrated by constructive and rigorous thinking similar
to that which has come to dominatc the natural sciences.

But there are several aspects of the quantitative approach to economics, and
no single one of these aspects taken by itself, should be confounded with econo-
metrics. Thus, econometrics is by no means the same as economic statistics. Nor
is it identical with what we call general economic theory, although a consider-
able portion of this theory has a definitely quantitative character. Nor should
econometrics be taken as synonomous [sic] with the application of mathematics
to economics. Experience has shown that each of these three viewpoints, that
of statistics, economic theory, and mathematics. is a necessary, but not by itself
a sufficient, condition for a real understanding of the quantitative relations in
modern economic life. It is the unification of all three that is powerful. And it
is this unification that constitutes econometrics.

Frisch (1933) and his society responded to an unprecedented accumulation of statisti-
cal information. They saw a need to establish a body of principles that could organize
what would otherwise become a bewildering mass of data. Neither the pillars nor the
objectives of econometrics have changed in the years since this editorial appeared.
Econometrics is the field of economics that concerns itself with the application of math-
ematical statistics and the tools of statistical inference to the empirical measurement of
relationships postulated by economic theory.

1.2 ECONOMETRIC MODELING

Econometric analysis will usually begin with a statement of a theoretical proposition,
Consider, for example, a canonical application:

Example 1.1 Keynes’s Consumption Function
From Keynes’s (1936) General Theory of Employment, Interest and Money:

We shall therefore define what we shall call the propensity to consume as the func-
tional relationship 7 between X, a given level of income and C, the expenditure on
consumption out of the level of income, so that C = f(X).

The amount that the community spends on consumption depends (i) partly on
the amount of its income, (ii) partly on other objective attendant circumstances, and
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(i) partly on the subjective needs and the psychological propensities and habits of
the individuals composing it. The fundamental psychological law upon which we are
entitled to depend with great confidence, both a priori from our knowledge of human
nature and from the detailed facts of experience, is that men are disposed, as a rule
and on the average, to increase their consumption as their income increases, but not
by as much as the increase in their income.” That is, ... dC/dX is positive and less
than unity. -

But, apart from short period changes in the level of income, it is also obvious that
a higher absolute level of income will tend as a rule to widen the gap between income
and consumption.. .. These reasons will lead, as a rule, to a greater proportion of
income being saved as real income increases.

The theory asserts a relationship between consumption and income, C = f(X), and claims
in the third paragraph that the marginal propensity to consume (MPC), dC/dX, is between
0 and 1. The final paragraph asserts that the average propensity to consume (APC), C/X,
falls as income rises, or d(C/X)/dX = (MPC — APC)/X < 0. It follows that MPC < APC.
The most common formulation of the consumption function is a linear relationship, C =
o + pX, that satisfies Keynes’s “laws” if f lies between zero and one and if « is greater
than zero.

These theoretical propositions provide the basis for an econometric study. Given an ap-
propriate data set, we could investigate whether the theory appears to be consistent with
the observed “facts.” For example, we could see whether the linear specification appears to
be a satisfactory description of the relationship between consumption and income, and, if
so, whether « is positive and f is between zero and one. Some issues that might be stud-
ied are (1) whether this relationship is stable through time or whether the parameters of the
relationship change from one generation to the next (a change in the average propensity to
save, 1—APC, might represent a fundamental change in the behavior of consumers in the
economyy); (2) whether there are systematic differences in the relationship across different
countries, and, if so, what explains these differences; and (3) whether there are other factors
that would improve the ability of the model to explain the relationship between consumption
and income. For example, Figure 1.1 presents aggregate consumption and personal income
in constant dollars for the U.S. for the 10 years of 1970-1979. (See Appendix Table F1.1)
Apparently, at least superficially, the data (the facts) are consistent with the theory. The rela-
tionship appears to be linear, albeit only approximately, the intercept of a line that lies close
to most of the points is positive and the slope is less than one, although not by much.

Economic theorics such as Keynes's are typically crisp and unambiguous. Models
of demand. production. and aggregate consumption all specify precisc. deterministic
relationships. Dependent and independent variables are identified. a functional form is
specified. and in most cases. at least a qualitative statement is made about the directions
of effects that occur when independent variables in the model change. Of course. the
model is only a simplification of reality. It will include the salient features of the rela-
tionship of interest. but will Icave unaccounted for influences that might well be present
butare regarded as unimportant. No model could hope to encompass the myriad essen-
tially random aspects of economic life. It is thus also necessary to incorporate stochastic
elements. As a consequence. observations on a dependent variable will display varia-
tion attributable not only to differences in variables that are explicitly accounted for.
but also to the randomness of human behavior and the interaction of countless minor
influences that are not. It is understood that the introduction of a random *disturbance™
into a deterministic model is not intended mercly to paper over its inadequacies. It is

"Modern economists are rarely this confident about their theories. More contemporary applications gencrally
begin from first principles and behavioral axioms. rather than simple observation.
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FIGURE 1.1 Consumption Data, 1970-1979.

cssential to examine the results of the study, in a sort of postmortem, to ensure that the
allegedly random, unexplained factor is truly unexplainable. If it is not, the model is, in
fact, inadequate. The stochastic element endows the model with its statistical proper-
ties. Observations on the variable(s) under study are thus taken to be the outcomes of
a random process. With a sufficiently detailed stochastic structure and adequate data.
the analysis will become a matter of deducing the propertics of a probability distri-
bution. The tools and methods of mathematical statistics will provide the operating
principles.

A model (or theory) can never truly be confirmed unless it is made so broad as to
include every possibility. But it may be subjected to ever more rigorous scrutiny and,
in the face of contradictory evidence. refuted. A deterministic thecory will be invali-
dated by a single contradictory observation. The introduction of stochastic elements
into the model changes it from an exact statement to a probabilistic description about
expected outcomes and carries with it an important implication. Only a preponder-
ance of contradictory evidence can convincingly invalidate the probabilistic model, and
what constitutes a “preponderance of evidence™ is a matter of interpretation. Thus, the
probabilistic model is less precisc but at the same time. more robust.”

The process of cconometric analysis departs from the specification of a theoreti-
cal relationship. We initially proceed on the optimistic assumption that we can obtain
precise measurements on all the variables in a correctly specified model. If the idcal
conditions arc met at cvery step, the subsequent analysis will probably be routine.
Unfortunately, they rarely are. Some of the difficulties one can expect to encounter are
the following:

-See Keuzenkamp and Magnus (1995) for a lengthy symposium on testing in econometrics.
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e The data may be badly measured or may correspond only vaguely to the variables
in the model. “The intercst rate™ is one example.

e Some of the variables may be inherently unmeasurable. “Expectations™ are a case
in point.

e The theory may make only a rough guess as to the correct functional form, if it
makes any at all, and we may be forced to choose from an embarrassingly long
menu of possibilities.

e The assumed stochastic properties ol the random terms in the model may be
demonstrably violated. which may call into question the methods of estimation
and inference procedures we have used.

e Some relevant variables may be missing from the model.

The ensuing steps of the analysis consist of coping with thesc problems and attempting
to cull whatever information is likely to be present in such obviously imperfect data.
The methodology is that of mathematical statistics and economic theory. The product
Is an econometric model.

1.3 DATA AND METHODOLOGY

The connection between underlying behavioral models and the modern practice of
econometrics is increasingly strong. Practitioners rely heavily on the theoretical tools
of microeconomics including utility maximization. profit maximization, and market
equilibrium. Macroeconomic model builders rely on the interactions between cconomic
agents and policy makers. The analyses are directed at subtle, difficult questions that
often require intricate, complicated formulations. A few applications:

¢ What arc the likely effcets on labor supply behavior of proposed negative income
taxes? [Ashenfelter and Heckman (1974).]

®  Docs a monetary policy regime that is strongly oriented toward controlling
inflation impose a real cost in terms of lost output on the U.S. economy?
[Cecchetti and Rich (2001).]

e Did 2001°s largest federal tax cut in U.S. history contribute to or dampen the
concurrent recession? Or was it irrelevant? (Still to be analyzed.)

¢ Does attending an elite college bring an expected payoff in lifetime expected
income sufficient to justify the higher tuition? [Krueger and Dale (2001) and
Krueger (2002).]

¢ Does a voluntary training program produce tangible benefits? Can thesc benefits
be accurately measured? [Angrist (2001).]

Each of these analyses would depart from a formal model of the process underlying the
observed data.

The field of econometrics is large and rapidly growing. In one dimension, we
can distinguish between theoretical and applied econometrics. Theorists develop new
tcchniques and analyze the consequences of applying particular methods when the as-
sumptions that justify them are not met. Applied econometricians are the users of these
techniques and the analysts of data (real world and simulated). Of course, the distinction
is far from clean; practitioners routinely develop new analytical tools for the purposes of
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the study that they are involved in. This book contains a heavy dosc of theory. but it is di-
rected toward applied cconometrics. [ have attempted to survey techniques, admittedly
some quite claborate and intricate. that have seen wide use “in the field.”

Another loose distinction can be made between microcconometrics and macro-
econometrics. The former is characterized largely by its analysis of cross section and
pancldata and by its focus on individual consumers. firms, and micro-level decision mak-
ers. Macroeconometrics is generally involved in the analysis of time series data, usually
of broad aggregates such as price levels. the money supply, exchange rates. output, and
so on. Once again. the boundaries are not sharp. The very large field of financial econo-
metrics is concerned with long-time serics data and occasionally vast panel data sets,
but with a very focused orientation toward models of individual behavior. The analysis
of market returns and exchange rate behavior is neither macro- nor microeconometric
in nature. or perhaps it is somc of both. Another application that we will examine in
this text concerns spending patterns of municipalitics, which. again, rests somewhere
between the two fields.

Applicd econometric methods will be used for estimation of important quantitics,
analysis of cconomic outcomes, markets or individual behavior, testing theories, and for
forecasting. The last of these is an art and science in itself. and (fortunately) the subject
of a vast library of sources. Though we will brietly discuss some aspecets of forecasting.
our interest in this text will be on estimation and analysis of models. The presentation.,
where therc is a distinction to be made. will contain a blend of microeconomctric and
macroeconometric techniques and applications. The first 18 chapters of the book are
largely devoted to results that form the platform of both arcas. Chapters 19 and 20 focus
on time series modcling while Chapters 21 and 22 are devoted to methods more suited
to cross sections and pancls. and used more frequently in microeconometrics. Save for
some brief applications. we will not be spending much time on financial cconometrics.
For those with an interest in this field. I would recommend the celebrated work by
Campbell. Lo. and Mackinlay (1997). It is also necessary to distinguish between time
series analysis (which is not our focus) and methods that primarily use time series data.
The former is. like forecasting, a growth industry served by its own literature in many
fields. While we will employ some of the technigques of time series analysis, we will spend
relatively little time developing first principles.

The techniques used in econometrics have been employed in a widening variety
of fields. including political methodology. sociology [see. e.g.. Long (1997)]. health eco-
nomics, medical research (how do we handle attrition from medical treatment studies?)
environmental cconomics, transportation cngincering, and numerous others. Practi-
tioners in these fields and many more are all heavy users of the techniques described in
this text.

1.4 PLAN OF THE BOOK

The remainder of this book is organized into five parts:

1. Chapters 2 through 9 present the classical lincar and nonlinear regression models.
We will discuss specification, estimation. and statistical inference.
2. Chapters 10 through 15 describe the gencralized regression model, panel data
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applications. and systems of equations.

Chapters 16 through 18 present general results on different methods of estimation
including maximum likelihood, GMM. and simulation methods. Various
estimation frameworks. including non- and semiparametric and Bayesian
estimation are presented in Chapters 16 and 18.

Chapters 19 through 22 present topics in applied econometrics. Chapters 19 and 20
are devoted to topics in time scries modeling while Chapters 21 and 22 are about
microeconometrics, discrete choice modeling, and limited dependent variables.
Appendices A through D present background material on tools used in
cconometrics including matrix algebra, probability and distribution theory,
estimation, and asymptotic distribution theory. Appendix E presents results on
computation. Appendices A through D are chapter-length surveys of the tools
used in econometrics. Since it is assumed that the reader has some previous
training in each of these topics. these summaries are included primarily for those
who desire a refresher or a convenient reference. We do not anticipate that these
appendices can substitute for a course in any of thesc subjects. The intent of these
chapters is to provide a reasonably concise summary of the results, nearly all of
which are explicitly used elsewhere in the book.

The data sets used in the numerical examples are described in Appendix F. The actual
data sets and other supplementary materials can be downloaded from the website for
the text,

www.prenhall.com/greene
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THE CLASSICAL MULTIPLE
LINEAR REGRESSION
MODEL
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INTRODUCTION

An econometric study begins with a set of propositions about some aspect of the
economy. The theory specifies a set of precise, deterministic relationships among vari-
ables. Familiar examples are demand equations, production functions, and macroeco-
nomic models. The empirical investigation provides estimates of unknown parameters
in the model, such as elasticities or the effects of monetary policy, and usually attempts to
measure the validity of the theory against the behavior of observable data. Once suitably
constructed, the model might then be used for prediction or analysis of behavior. This
book will develop a large number of models and techniques used in this framework.

The linear regression model is the single most useful tool in the econometrician’s
kit. Though to an increasing degree in the contemporary literature, it is often only
the departure point for the full analysis, it remains the device used to begin almost all
empirical research. This chapter will develop the model. The next several chapters will
discuss more elaborate specifications and complications that arise in the application of
techniques that are based on the simple models presented here.

»

2.2 THE LINEAR REGRESSION MODEL

The multiple linear regression model is used to study the relationship between a depen-
dent variable and one or more independent variables. The generic form of the linear
regression model is

y=fx1,x,...,xx) +¢

-1
=xifi+xpr+ - +xxPfx +¢

where y is the dependent or explained variable and x, ..., xx are the independent
or explanatory variables. One’s theory will specify f(xi, x», ..., xg). This function is
commonly called the population regression equation of y on xq, ..., xg. In this set-
ting, y is the regressand and x;, k=1, ..., K, are the regressors or covariates. The
underlying theory will specify the dependent and independent variables in the model.
It is not always obvious which is appropriately defined as each of these—for exam-
ple, a demand equation, quantity = 81 + price x 5 + income x B3 + ¢, and an inverse
demand equation, price = y; + quantity x y» 4+ income X y3 + u are equally valid rep-
resentations of a market. For modeling purposes, it will often prove useful to think in
terms of “autonomous variation.” One can conceive of movement of the independent

7
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variables outside the relationships defined by the model while movement of the depen-
dent variable is considered in response to some independent or exogenous stimulus.!

The term ¢ is a random disturbance, so named because it “disturbs” an otherwise
stable relationship. The disturbance arises for several reasons, primarily because we
cannot hope to capture every influence on an economic variable in a model, no matter
how elaborate. The net effect, which can be positive or negative, of these omitted factors
is captured in the disturbance. There are many other contributors to the disturbance
in an empirical model. Probably the most significant is errors of measurement. It is
easy to theorize about the relationships among precisely defined variables; it is quite
another to obtain accurate measures of these variables. For example, the difficulty of
obtaining reasonable measures of profits, interest rates, capital stocks, or, worse yet,
flows of services from capital stocks is a recurrent theme in the empirical literature.
At the extreme, there may be no observable counterpart to the theoretical variable.
The literature on the permanent income model of consumption [e.g., Friedman (1957)]
provides an interesting example.

We assume that each observation in a sample (y;, X1, Xi2, ..., Xig), i = 1,...,n,1is
generated by an underlying process described by

Vi =X+ Xfo + -+ XixBx + &

The observed value of y; is the sum of two parts, a deterministic part and the random
part, ¢;. Our objective is to estimate the unknown parameters of the model, use the
data to study the validity of the theoretical propositions, and perhaps use the model to
predict the variable y. How we proceed from here depends crucially on what we assume
about the stochastic process that has led to our observations of the data in hand.

Example 2.1 Keynes’s Consumption Function
Example 1.1 discussed a model of consumption proposed by Keynes and his General Theory
(1936). The theory that consumption, C, and income, X, are related certainly seems consistent
with the observed “facts” in Figures 1.1 and 2.1. (These data are in Data Table F2.1.) Of
course, the linear function is only approximate. Even ignoring the anomalous wartime years,
consumption and income cannot be connected by any simple deterministic relationship.
The linear model, C = « + BX, is intended only to represent the salient features of this part
of the economy. It is hopeless to attempt to capture every influence in the relationship. The
next step is to incorporate the inherent randomness in its real world counterpart. Thus, we

"~ write C = f(X, ¢), where ¢ is a stochastic element. It is important not to view ¢ as a catchall

for the inadequacies of the model. The model including ¢ appears adequate for the data
not including the war years, but for 1942-1945, something systematic clearly seems to be
missing. Consumption in these years could not rise to rates historically consistent with these
levels of income because of wartime rationing. A model meant to describe consumption in
this period would have to accommodate this influence.

It remains to establish how the stochastic element will be incorporated in the equation.
The most frequent approach is to assume that it is additive. Thus, we recast the equation
in stochastic terms: C=a + 8X + ¢. This equation is an empirical counterpart to Keynes’s
theoretical model. But, what of those anomalous years of rationing? If we were to ignore
our intuition and attempt to “fit” a line to all these data—the next chapter will discuss
at length how we should do that—we might arrive at the dotted line in the figure as our best
guess. This line, however, is obviously being distorted by the rationing. A more appropriate

1By this definition. it would seem that in our demand relationship, only income would be an independent
variable while both price and quantity would be dependent. That makes sense—in a market, price and quantity
are determined at the same time, and do change only when something outside the market changes. We will
return to this specific case in Chapter 15.
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350

specification for these data that accommodates both the stochastic nature of the data and
the special circumstances of the years 1942-1945 might be one that shifts straight down
in the war years, C =« + X + Auaryearsdw + £, Where the new variable, Oyaryears €QUAls one in
1942-1945 and zero in other years and 8,, < 0.

One of the most useful aspects of the multiple regression model is its ability to identify
the independent effects of a set of variables on a dependent variable. Example 2.2
describes a common application.

Example 2.2 FEarnings and Education
A number of recent studies have analyzed the relationship between earnings and educa-
tion. We would expect, on average, higher levels of education to be associated with higher
incomes. The simple regression model

earnings = By + B education + s,

however, neglects the fact that most people have higher incomes when they are older than
when they are young, regardless of their education. Thus, 8, will overstate the marginal
impact of education. If age and education are positively correlated, then the regression model
will associate all the observed increases in income with increases in education. A better
specification would account for the effect of age, as in

eamings = By + B, education + B age + ¢.

It is often observed that income tends to rise less rapidly in the later earning years than in
the early ones. To accommaodate this possibility, we might extend the model to

earnings = B1 + B education + s age + p4 age® + ¢.

We would expect f; to be positive and g, to be negative.

The crucial feature of this model is that it allows us to carry out a conceptual experiment
that might not be observed in the actual data. In the example, we might like to (and could)
compare the earnings of two individuals of the same age with different amounts of “education”
even if the data set does not actually contain two such individuals. How education should be
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measured in this setting is a difficult problem. The study of the earnings of twins by Ashenfelter
and Krueger (1994), which uses precisely this specification of the earnings equation, presents
an interesting approach. We will examine this study in some detail in Section 5.6.4.

A large literature has been devoted to an intriguing question on this subject. Education
is not truly “independent” in this setting. Highly motivated individuals will choose to pursue
more education (for example, by going to college or graduate school) than others. By the
same token, highly motivated individuals may do things that, on average, lead them to have
higher incomes. If so, does a positive g, that suggests an association between income and
education really measure the effect of education on income, or does it reflect the effect of
some underlying effect on both variables that we have not included in our regression model?
We will revisit the issue in Section 22.4.

2.3 ASSUMPTIONS OF THE CLASSICAL LINEAR
REGRESSION MODEL

The classical linear regression model consists of a set of assumptions about how a data
set will be produced by an underlying “data-generating process.” The theory will specify
a deterministic relationship between the dependent variable and the independent vari-
ables. The assumptions that describe the form of the model and relationships among its
parts and imply appropriate estimation and inference procedures are listed in Table 2.1.

2.3.1 LINEARITY OF THE REGRESSION MODEL

Let the column vector x; be the #n observations on variable x;, k = 1,..., K, and as-
semble these data in an #n x K data matrix X. In most contexts, the first column of X is
assumed to be a column of 1s so that $; is the constant term in the model. Let y be the

n observations, yi, ..., y,, and let € be the column vector containing the n disturbances.
TABLE 2.1 S Classical Linear Regression Model

Al. Linearity: y; = x;181 + x28: + - - + x;xBx + €. The model specifies a linear relationship
between y and xy, ..., xk.

A2. Full rank: There is no exact linear relationship among any of the independent variables
in the model. This assumption will be necessary for estimation of the parameters of the
model.

A3. Exogeneity of the independent variables: E[e; |xj1, x5, ..., x;x] = 0. This states that
the expected value of the disturbance at observation / in the sample is not a function of the
independent variables observed at any observation, including this one. This means that the
independent variables will not carry useful information for prediction of ¢;.

A4. Homoscedasticity and nonautocorrelation: Each disturbance, &; has the same finite vari-
ance, o and is uncorrelated with every other disturbance, ¢;. This assumption limits the
generality of the model, and we will want to examine how to relax it in the chapters to
follow.

AS. Exogenously generated data: The data in (x;;, x 2, ---. X;x) may be any mixture of con-
stants and random variables. The process generating the data operates outside the assumptions
of the model—that is, independently of the process that generates ;. Note that this extends
A3. Analysis is done conditionally on the observed X.

A6. Normal distribution: The disturbances are normally distributed. Once again, this is a con-
venience that we will dispense with after some analysis of its implications.
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The model in (2-1) as it applies to all n observations can now be written

y=xip1+---+xgPk +¢, (2-2)

or in the form of Assumption 1,

AssumpTiON:  y = XS + &. 2-3)

A NOTATIONAL CONVENTION. ,
Henceforth, to avoid a possibly confusing and cumbersome notation, we will use'a
boldface x to denote a column or a-row of X.. Which applies will be clear from the
context. In (2-2), % is the kth: column of X. Subseripts j and k will be used to denote
columns {variables), It will often be convenient to refer to a single observation in (2-3),
which we would write

Subscripts i-and f will generally be used to denote rows (observatio
is.a column vector that is the transpose oftheith 1 x Krowof X.

Our primary interest is in estimation and inference about the parameter vector 8.
Note that the simple regression model in Example 2.1 is a special case in which X has
only two columns, the first of which is a column of 1s. The assumption of linearity of the
regression model includes the additive disturbance. For the regression to be linear in
the sense described here, it must be of the form in (2-1) either in the or1g1nal variables
or after some suitable transformation. For example, the model

y = AxPef
is linear (after taking logs on both sides of the equation), whereas
y=Ax" +¢

is not. The observed dependent variable is thus the sum of two components, a deter-
ministic element « + Ax and a random variable . It is worth emphasizing that neither
of the two parts is directly observed because o and 8 are unknown.

The linearity assumption is not so narrow as it might first appear. In the regression
context, linearity refers to the manner in which the parameters and the disturbance enter
the equation, not necessarily to the relationship among the variables. For example, the
equationsy =a+px+s y=a+pcos(x)+e,y=a+pB/x+e,andy =a+Blnx+¢
are all linear in some function of x by the definition we have used here. In the examples,
only x has been transformed, but y could have been as well, asin y = Axfe®, whichis a
linear relationship in the logs of x and y; In y = « + B Inx + &. The variety of functions
is unlimited. This aspect of the model is used in a number of commonly used functional
forms. For example, the loglinear model is

Iny=p+pnx+plnx+ -+ Bxlnxg +e.

This equation is also known as the constant elasticity form as in this equation, the
elasticity of y with respect to changes in x is dIn y/3 Inx; = B, which does not vary
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with x;. The loglinear form is often used in models of demand and production. Different
values of 8 produce widely varying functions.

Example 2.3 The U.S. Gasoline Market
Data on the U.S. gasoline market for the years 1960—1995 are given in Table F2.2 in
Appendix F. We will use these data to obtain, among other things, estimates of the income,
own price, and cross-price elasticities of demand in this market. These data also present an
interesting question on the issue of holding “all other things constant,” that was suggested
in Example 2.2. In particular, consider a somewhat abbreviated model of per capita gasoline
consumption:

In(G/pop) = B1 + B2 In income + B3 In priceg + B4 IN Prewcars + Bs IN Pusedcars + &.

This model will provide estimates of the income and price elasticities of demand for gasoline
and an estimate of the elasticity of demand with respect to the prices of new and used cars.
What should we expect for the sign of 8,7 Cars and gasoline are complementary goods, so if
the prices of new cars rise, ceteris paribus, gasoline consumption should fall. Or should it? If
the prices of new cars rise, then consumers will buy fewer of them; they will keep their used
cars longer and buy fewer new cars. If older cars use more gasoline than newer ones, then
the rise in the prices of new cars would lead to higher gasoline consumption than otherwise,
not lower. We can use the muitiple regression model and the gasoline data to attempt to
answer the question.

A semilog model is often used to model growth rates:
Iny, =x;8+ 8t +&.

In this model, the autonomous (at least not explained by the model itself) proportional,
per period growth rate is dIn y/dt = §. Other variations of the general form

f) =gx;B+er)

will allow a tremendous variety of functional forms, all of which fit into our definition
of a linear model.

The linear regression model is sometimes interpreted as an approximation to some
unknown, underlying function. (See Section A.8.1 for discussion.) By this interpretation,
however, the linear model, even with quadratic terms, is fairly limited in that such
an approximation is likely to be useful only over a small range of variation of the
independent variables. The translog model discussed in Example 2.4, in contrast, has
proved far more effective as an approximating function.

Example 2.4 The Translog Model

Modern studies of demand and production are usually done in the context of a flexible func-
tional form. Flexible functional forms are used in econometrics because they allow analysts
to model second-order effects such as elasticities of substitution, which are functions of the
second derivatives of production, cost, or utility functions. The linear model restricts these to
equal zero, whereas the loglinear model (e.g., the Cobb-Douglas model) restricts the inter-
esting elasticities to the uninteresting values of -1 or +1. The most popular flexible functional
form is the translog model, which is often interpreted as a second-order approximation to
an unknown functional form. [See Berndt and Christensen (1973).] One way to derive it is
as follows. We first write y = g(xy, ..., xx). Then, Iny = Ing(...) = f(...). Since by a trivial
transformation x, = exp(Inx,), we interpret the function as a function of the logarithms of
the x’s. Thus, iIny = f(inxy, ..., Inxk). o
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Now, expand this function in a second-order Taylor series around the pointx = [1, 1, ..., 1]
so that at the expansion point, the log of each variable is a convenient zero. Then

Iny = (0 +Z[df )/9 1IN Xk 1nx=0 IN X¢
k=1

K K
EZZ /8InXkdInX/]an_olnXklnX/+8
k=1 =1

The disturbance in this model is assumed to embody the familiar factors and the error of
approximation to the unknown function. Since the function and its derivatives evaluated at
the fixed value 0 are constants, we interpret them as the coefficients and write

Iny = 8o +Zﬁk|nxk + = 5 ZZV‘" InxgInx, + e.

k=1 =1

This model is linear by our definition but can, in fact, mimic an impressive amount of curvature
when it is used to approximate another function. An interesting feature of this formulation
is that the loglinear model is a special case, vy = 0. Also, there is an interesting test of the
underlying theory possible because if the underlying function were assumed to be continuous
and twice contmuously differentiable, then by Young’s theorem it must be true that y; = yj.
We will see in Chapter 14 how this feature is studied in practice.

Despite its great flexibility, the linear model does not include all the situations we
encounter in practice. For a simple example, there is no transformation that will reduce
y =a+1/(f1 + B2x) + ¢ to linearity. The methods we consider in this chapter are not
appropriate for estimating the parameters of such a model. Relatively straightforward
techniques have been developed for nonlinear models such as this, however. We shall
treat them in detail in Chapter 9.

2.3.2 FULL RANK

Assumption 2 is that there are no exact linear relationships among the variables.

AssumprioN: X is ann x K matrix with rank K. (2-5)

Hence, X has full column rank; the columns of X are linearly independent and there
are at least K observations. [See (A-42) and the surrounding text.] This assumption is
known as an identification condltlon. To see the need for this assumption, consider an
example. '

Example 2.5 Short Rank
Suppose that a cross-section model specifies

C = B1 + B nonlabor income + B3 salary + B4 total income + ¢,

where total income is exactly equal to salary plus nonlabor income. Clearly, there is an exact
linear dependency in the model. Now let

B, =p> +a,

B3=ps +a,
and

B,=Pps—a
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where a is any number. Then the exact same value appears on the right-hand side of C if
we substitute 8,, g5, and g, for B2, B3, and 4. Obviously, there is no way to estimate the
parameters of this model.

If there are fewer than K observations, then X cannot have full rank. Hence, we make
the (redundant) assumption that » is at least as large as K.

In a two-variable linear model with a constant term, the full rank assumption means
that there must be variation in the regressor x. If there is no variation in x, then all our
observations will lie on a vertical line. This situation does not invalidate the other
assumptions of the model; presumably, it is a flaw in the data set. The possibility that
this suggests is that we could have drawn a sample in which there was variation in x,
but in this instance, we did not. Thus, the model still applies, but we cannot learn about
it from the data set in hand.

2.3.3 REGRESSION

The disturbance is assumed to have conditional expected value zero at every observa-
tion, which we write as

E[e1X] = 0. (2-6)
For the full set of observations, we write Assumption 3 as:
Ele |X]
E [82 | X]
AssumpTioN:  Efe|X] = . =0. 27
Elen|X]

There is a subtle point in this discussion that the observant reader might have noted.
In (2-7), the left-hand side states, in principle, that the mean of each ¢; conditioned on
all observations x; is zero. This conditional mean assumption states, in words, that no
observations on x convey information about the expected value of the disturbance.
It is conceivable—for example, in a time-series setting—that although x; might pro-
vide no information about E|[g;|-],X; at some other observation, such as in the next
time period, might. Our assumption at this point is that there is no information about
E[&; | -] contained in any observation x;. Later, when we extend the model, we will
study the implications of dropping this assumption. [See Wooldridge (1995).] We will
also assume that the disturbances convey no information about each other. That is,
Elei|e1, ..., 61,41, --.,€n] = 0. In sum, at this point, we have assumed that the
disturbances are purely random draws from some population.

The zero conditional mean implies that the unconditional mean is also zero, since

Elei] = EE[& |X]] = E[0] = 0.

Since, foreach¢;, Cov[ E [¢; | X], X] = Cov[e;, X], Assumption 3implies that Cov[e;, X]=
0 for all i. (Exercise: Is the converse true?)

In most cases, the zero mean assumption is not restrictive. Consider a two-variable
model and suppose that the mean of ¢ is u # 0. Then « + Bx + ¢ is the same as
(@ +p) + Bx+ (e—p). Letting &' = o + p and &' = e—u produces the original model.
For an application, see the discussion of frontier production functions in Section 17.6.3.



CHAPTER 2 4 The Classical Multiple Linear Regression Model 15

But, if the original model does not contain a constant term, then assuming E[g;] = 0
could be substantive. If E [¢;] can be expressed as a linear function of x;, then, as before, a
transformation of the model will produce disturbances with zero means. But, if not, then
the nonzero mean of the disturbances will be a substantive part of the model structure.
This does suggest that there is a potential problem in models without constant terms. As
a general rule, regression models should not be specified without constant terms unless
this is specifically dictated by the underlying theory.? Arguably, if we have reason to
specify that the mean of the disturbance is something other than zero, we should build it
into the systematic part of the regression, leaving in the disturbance only the unknown
part of &. Assumption 3 also implies that

E[y|X] = X8. 2-8)

Assumptions 1 and 3 comprise the linear regression model. The regression of y on X is
the conditional mean, E [y | X], so that without Assumption 3, X8 is not the conditional
mean function.

The remaining assumptions will more completely specify the characteristics of the
disturbances in the model and state the conditions under which the sample observations
on x are obtained. ‘

2.3.4 SPHERICAL DISTURBANCES

The fourth assumption concerns the variances and covariances of the disturbances:
. . Var[8i|X]=cr7‘, foralli =1,...,n,
and |
Covle;, e; | X] =0, foralli # j.

Constant variance is labeled homoscedasticity. Consider amodel that describes the prof-
its of firms in an industry as a function of, say, size. Even accounting for size, measured in
dollar terms, the profits of large firms will exhibit greater variation than those of smaller
firms. The homoscedasticity assumption would be inappropriate here. Also, survey data
on household expenditure patterns often display marked heteroscedasticity, even after
accounting for income and household size.

Uncorrelatedness across observations is labeled generically nonautocorrelation. In
Figure 2.1, there is some suggestion that the disturbances might not be truly independent
across observations. Although the number of observations is limited, it does appear
that, on average, each disturbance tends to be followed by one with the same sign. This
“Inertia” is precisely what is meant by autocorrelation, and it is assumed away at this
point. Methods of handling autocorrelation in economic data occupy a large proportion
of the literature and will be treated at length in Chapter 12. Note that nonautocorrelation
does not imply that observations y; and y; are uncorrelated. The assumption is that
deviations of observations from their expected values are uncorrelated.

ZModels that describe first differences of variables might well be specified without constants. Consider y, — y,_;.
If there is a constant term & on the right-hand side of the equation, then y; is a function of ¢, which is an
explosive regressor. Models with linear time trends merit special treatment in the time-series literature. We
will return to this issue in Chapter 19.
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The two assumptions imply that

[Ele1e11X] Ele1e2|X] -+ Ele16,]X]
Elee’|X] = E[82fl|X] E[82f2|X] E[Szfnlx]

Elener|X] Elene2|X] - Eleen| X]

-02! 0 --- 0

0 o2 -~ 0

|0 0 o?

which we summarize in Assumption 4:

AssumptioN:  Efee’| X] = oL 2-9)

By using the variance decomposition formula in (B-70), we find
Var[e] = E[Var[e | X]] + Var[E[e | X]] = ¢’L

Once again, we should emphasize that this assumption describes the information about
the variances and covariances among the disturbances that is provided by the indepen-
dent variables. For the present, we assume that there is none. We will also drop this
assumption later when we enrich the regression model. We are also assuming that the
disturbances themselves provide no information about the variances and covariances.
Although a minor issue at this point, it will become crucial in our treatment of time-
series applications. Models such as Var[e, | &,1] = 02 4+ ae? ;—a “GARCH” model (see
Section 11.8)—do not violate our conditional variance assumption, but do assume that
Var[e; | &1] # Var[g].

Disturbances that meet the twin assumptions of homoscedasticity and nonautocor-
relation are sometimes called spherical disturbances.’

2.3.5 DATA GENERATING PROCESS FOR THE REGRESSORS

It is common to assume that x; is nonstochastic, as it would be in an experimental
situation. Here the analyst chooses the values of the regressors and then observes y;.
This process might apply, for example, in an agricultural experiment in which y; is yield
and x; is fertilizer concentration and water applied. The assumption of nonstochastic
regressors at this point would be a mathematical convenience. With it, we could use the
results of elementary statistics to obtain our results by treating the vector x; simply as a
known constant in the probability distribution of y;. With this simplification, Assump-
tions A3 and A4 would be made unconditional and the counterparts would now simply
state that the probability distribution of ¢; involves none of the constants in X.

' Social scientists are almost never able to analyze experimental data, and relatively
few of their models are built around nonrandom regressors. Clearly, for example, in

3The term will describe the multivariate normal distribution; see (B-95).If £ = o2Iin the multivariate normal
density, then the equation f(x) = ¢ is the formula for a “ball” centered at g with radius ¢ in n-dimensional
space. The name spherical is used whether or not the normal distribution is assumed; sometimes the “spherical
normal” distribution is assumed explicitly. .
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any model of the macroeconomy, it would be difficult to defend such an asymmetric
treatment of aggregate data. Realistically, we have to allow the data on x; to be random
the same as y; so an alternative formulation is to assume that x; is a random vector and
our formal assumption concerns the nature of the random process that produces x;. If x;
is taken to be a random vector, then Assumptions 1 through 4 become a statement about
the joint distribution of y; and x;. The precise nature of the regressor and how we view
the sampling process will be a major determinant of our derivation of the statistical
properties of our estimators and test statistics. In the end, the crucial assumption is
Assumption 3, the uncorrelatedness of X and €. Now, we do note that this alternative
is not completely satisfactory either, since X may well contain nonstochastic elements,
including a constant, a time trend, and dummy variables that mark specific episodes
in time. This makes for an ambiguous conclusion, but there is a straightforward and
economically useful way out of it. We will assume that X can be a mixture of constants
and random variables, but the important assumption is that the ultimate source of the
data in X is unrelated (statistically and economically) to the source of e.

AssuMPTION: X may be fixed or random, but it is generated by a

mechanism that is unrelated to . (2-10)

2.3.6 NORMALITY

Itis convenient to assume that the disturbances are normally distributed, with zero mean
and constant variance. That is, we add normality of the distribution to Assumptions 3
and 4.

AssuMPTION: & | X ~ N[0, o1]. (2-11)

In view of our description of the source of ¢, the conditions of the central limit the-
orem will generally apply, at least approximately, and the normality assumption will be
reasonable in most settings. A useful implication of Assumption 6 is that it implies that
observations on ¢; are statistically independent as well as uncorrelated. [See the third
pointin Section B.8, (B-97) and (B-99).] Normality is often viewed as an unnecessary and
possibly inappropriate addition to the regression model. Except in those cases in which
some alternative distribution is explicitly assumed, as in the stochastic frontier model
discussed in Section 17.6.3, the normality assumption is probably quite reasonable.

Normality is not necessary to obtain many of the results we use in multiple regression
analysis, although it will enable us to obtain several exact statistical results. It does prove
useful in constructing test statistics, as shown in Section 4.7. Later, it will be possible
to relax this assumption and retain most of the statistical results we obtain here. (See
Sections 5.3, 5.4 and 6.4.)

2.4 SUMMARY AND CONCLUSIONS

This chapter has framed the linear regression model, the basic platform for model build-
ing in econometrics. The assumptions of the classical regression model are summarized
in Figure 2.2, which shows the two-variable case.
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3 .
LEAST SOUARES

e () s

INTRODUCTION

Chapter 2 defined the linear regression model as a set of characteristics of the population
that underlies an observed sample of data. There are a number of different approaches
to estimation of the parameters of the model. For a variety of practical and theoretical
reasons that we will explore as we progress through the next several chapters, the
method of least squares has long been the most popular. Moreover, in most cases in
which some other estimation method is found to be preferable, least squares remains
the benchmark approach, and often, the preferred method ultimately amounts to a
modification of least squares. In this chapter, we begin the analysis of this 1mportant set
of results by presenting a useful set of algebraic tools.

3.2 LEAST SQUARES REGRESSION

The unknown parameters of the stochastic relation y; =x]B + ¢; are the objects of
estimation. Itis necessary to distinguish between population quantities, such as g and &;,
and sample estimates of them, denoted b and e;. The population regressionis E[y; | x;] =
x; B, whereas our estimate of E[y; | x;] is denoted

Ji = xb.
The disturbance associated with the ith data point is
=i —x;B. |
For any value of b, we shall estimate ¢; with the residual
e, =y —xb.
From the deﬁnitioné,
yi=xB+e=xb+te.

These equations are summarized for the two variable regression in Figure 3.1.

The population quantity 8 is a vector of unknown parameters of the probability
distribution of y; whose values we hope to estimate with our sample data, (y;,x;),i =
1,...,n. This is a problem of statistical inference. It is instructive, however, to begin by
considering the purely algebraic problem of choosing a vector b so that the fitted line
x;b is close to the data points. The measure of closeness constitutes a fitting criterion.

19
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a+ Bx

Although numerous candidates have been suggested, the one used most frequently is

least squares.! : :

3.2.1 THE LEAST SQUARES COEFFICIENT VECTOR

The least squares coefficient vector minimizes the sum of squared residuals:

n n
Zefo = Z (i — xjby)?, 3-1)
i=1 i=1

where by denotes the choice for the coefficient vector. In matrix terms, minimizing the

sum of squares in (3-1) requires us to choose by to

Minimizey, S(bo) = ejer = (y — Xby)'(y — Xby). : (3-2)
Expanding this gives
ejeo =Yy — bpX'y — y'Xbg + byX'Xbg 3-3)
or ”
S(by) =¥y — 2y’ Xbg + boX'Xby.
The necessary condition for a minimum is

35(bo)
abg

= —2X"y + 2X'Xby = 0. : (3-9)

'We shall have to establish that the practical approach of fitting the line as closely as possible to the data by
least squares leads to estimates with good statistical properties. This makes intuitive sense and is, indeed, the
case. We shall return to the statistical issues in Chapters 4 and 5. :
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Let b be the solution. Then b satisfies the least squares normal equations,
X'Xb = X'y. (3-5)

If the inverse of X'X exists, which follows from the full rank assumption (Assumption
A2 in Section 2.3}, then the solution is

b= (X'X)'Xy. (3-6)
For this solution to minimize the sum of squares,

32S(b)

ab ob’
must be a positive definite matrix. Let ¢ = ¢/X’Xc for some arbitrary nonzero vector c.
Then

=2X'X

n
g=vv= Z viz, where v = Xec.

i=1

Unless every element of v is zero, g is positive. But if v could be zero, then v would be a
linear combination of the columns of X that equals 0, which contradicts the assumption
that X has full rank. Since ¢ is arbitrary, g is positive for every nonzero ¢, which estab-
lishes that 2X’X is positive definite. Therefore, if X has full rank, then the least squares
solution b is unique and minimizes the sum of squared residuals.

3.2.2 APPLICATION: AN INVESTMENT EQUATION

To illustrate the computations in a multiple regression. we consider an example based
on the macroeconomic data in Data Table F3.1. To estimate an investment equation,
we first convert the investment and GNP series in Table F3.1 to real terms by dividing
them by the CPI, and then scale the two series so that they are measured in trillions of
dollars. The other variables in the regression are a time trend (1, 2, .. .), an interest rate,
and the rate of inflation computed as the percentage change in the CPI. These produce
the data matrices listed in Table 3.1. Consider first a regression of real investment on a
constant, the time trend, and real GNP, which correspond to x1, x,, and x3. (For reasons
to be discussed in Chapter 20, this is probably not a well specified equation for these
macroeconomic variables. Tt will suffice for a simple numerical example, however.)
Inserting the specific variables of the example, we have

bn  + LT +b3G =LY,
hET + TP + b5 TG =% TY,
biZiGi + b TG + LG =%,GY.

A solution can be obtained by first dividing the first equation by n and rearranging it to
obtain

by =Y-bT-bG
=0.20333 — b, x 8 — b3 x 1.2873. 3-7)
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Real Real Interest Inflation

Investment Constant Trend GNP Rate Rate
x) @) (1) G) R) P)
0.161 1 1 1.058 5.16 4.40
0.172 1 2 1.088 5.87 5.15
0.158 1 3 1.086 5.95 5.37
0.173 1 4 1.122 4.88 4.99
0.195 1 5 1.186 4.50 416
0.217 1 6 1.254 6.44 5.75
0.199 1 7 1.246 7.83 8.82
y =0.163 X=1 8 1.232 6.25 931
0.195 1 9 1.298 5.50 5.21
0.231 1 10 1.370 5.46 5.83
0.257 1 11 1.439 7.46 7.40
0.259 1 12 1.479 10.28 8.64
0.225 1 13 1.474 11.77 9.31
0.241 1 14 1.503 13.42 9.44
0.204 1 15 1.475 11.02 5.99

Note: Subsequent results are based on these values. Slightly different results are obtained if the raw data in
Table F3.1 are input to the computer program and transformed internally.

Insert this solution in the second and third equations, and rearrange terms again to yield
a set of two equations:
bySi(T - T) - + byZ(T - T)G — G) = Tu(T - T)(Y; - 1),

3-8
T (T, — TYGi — G) + b3Zi(G; — G)? =TG- G)Y, - Y). 9

This result shows the nature of the solution for the slopes, which can be computed
from the sums of squares and cross products of the deviations of the variables. Letting
lowercase letters indicate variables measured as deviations from the sample means, we
find that the least squares solutions for b, and b; are

E,»tiyiEigiz — X8 YyiXitigi _ 1.6040(0.359609) — 0.066196(9.82) _

= = = —0.0171984,
. b2 Z,tlelglz — (Zigiti)z 280(0.359609) — (982)2
i g ,'Eit-z — ZiLyiXitig 0.066196(280) — 1.6040(9.82
by = BN T MNSAB (250) 082 _ o6s3723.
Eit,' Eigi - (El‘git,‘)z 280(0.359609) — (982)2

With these solutions in hand, the intercept can now be computed using (3-7); by =
— 0.500639.

Suppose that we just regressed investment on the constant and GNP, omitting the
time trend. At least some of the correlation we observe in the data will be explainable
because both investment and real GNP have an obvious time trend. Consider how this
shows up in the regression computation. Denoting by “b,” the slope in the simple,
bivariate regression of variable y on a constant and the variable x, we find that the slope
in this reduced regression would be

by = 280 _ 0184078, (39)
2igf ,
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Now divide both the numerator and denominator in the expression for b; by ;2% g2.
By manipulating it a bit and using the definition of the sample correlation between G
and T,r2 = (X;g:1:)%/(Z; g, ¥;1%), and defining b, and b,, likewise, we obtain

b g[
b = byg bylbfg
Y8t — 2 2
1—rg 11— Ter

=0.653723. (3-10)

(The notation “b,¢,” used on the left-hand side is interpreted to mean the slope in
the regression of y on g “in the presence of ¢.”) The slope in the multiple regression
differs from that in the simple regression by including a correction that accounts for the
influence of the additional variable ¢ on both Y and G. For a striking example of this
effect, in the simple regression of real investment on a time trend, by, = 1.604/280 =
0.0057286, a positive number that reflects the upward trend apparent in the data. But, in
the multiple regression, after we account for the influence of GNP on real investment,
the slope on the time trend is —0.0171984, indicating instead a downward trend. The
general result for a three-variable regression in which xp is a constant term is

by2 — by3bs;

3-11
1-r% G-1D)

bys =
Itis clear from this expression that the magnitudes of by,.3 and b, can be quite different.
They need not even have the same sign.

As afinal observation, note what becomes of by, in (3-10) if rgzt equals zero. The first
term becomes by,, whereas the second becomes zero. (If G and T are not correlated,
then the slope in the regression of G on 7T, by, is zero.) Therefore, we conclude the
following. $

THEOREM 3.1 Orthogonal Regression
If the variables in a multiple regression are not correlated (i.e., are orthogonal),

then the multiple regression slopes are the same as the slopes in the individual
simple regressions.

In practice, you will never actually compute a multiple regression by hand or with a
calculator. For a regression with more than three variables, the tools of matrix algebra
are indispensable (as is a computer). Consider, for example, an enlarged model of
investment that includes—in addition to the constant, time trend, and GNP—an interest
rate and the rate of inflation. Least squares requires the simultaneous solution of five
normal equations. Letting X and y denote the full data matrices shown previously, the
normal equations in (3-5) are

15.000 120.00 19310 11179 99.770| |b; 3.0500
120.000 1240.0 16430 10359 875.60 by 26.004
19310 16430 25218 148.98 131.22 bz =] 3.9926

111.79 10359 148.98 953.86 799.02 by 23.521
99.770  875.60 131.22 799.02 716.67 bs 20.732
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The solution is

b = (X'X) X'y = (—0.50907, —0.01658, 0.67038, —0.002326, —0.00009401)".

3.2.3 ALGEBRAIC ASPECTS OF THE LEAST SQUARES SOLUTION
The normal equations are
X'Xb - X'y=-X'(y—Xb)=-X'e=0. (3-12)

Hence, for every column x; of X, xje = 0. If the first column of X is a column of 1s,
then there are three implications.

1. The least squares residuals sum to zero. This implication follows from xje =i'e =
Eiei =0.

2. The regression hyperplane passes through the point of means of the data. The first
normal equation implies that y = x’b.

3. The mean of the fitted values from the regression equals the mean of the actual
values. This implication follows from point 1 because the fitted values are just
¥ =Xb.

It is important to note that none of these results need hold if the regression does not
contain a constant term.

3.2.4 PROJECTION

The vector of least squares residuals is
<

: e=y— Xb. (3-13)
Inserting the result in (3-6) for b gives
e=y— XXX) 'Xy=(I-XXX)"'X")y =My. (3-14)

The n x n matrix M defined in (3-14) is fundamental in regression analysis. You can
easily show that M is both symmetric (M = M’) and idempotent (M = M?). In view of
(3-13), we can interpret M as a matrix that produces the vector of least squares residuals
in the regression of y on X when it premultiplies any vector y. (It will be convenient
later on to refer to this matrix as a “residual maker.”) It follows that

MX = 0. (3-15)

One way to interpret this result is that if X is regressed on X, a perfect fit will result and
the residuals will be zero.

Finally, (3-13) implies that y = Xb + e, which is the sample analog to {2-3). (See
Figure 3.1 as well.) The least squares results partition y into two parts, the fitted values
¥ = Xb and the residuals e. [See Section A.3.7, especially (A-54).] Since MX = 0, these
two parts are orthogonal. Now, given (3-13),

y=y—e=(I-My=XXX)'Xy=Py. (3-16)

The matrix P, which is also symmetric and idempotent, is a projection matrix. It is the
matrix formed from X such that when a vector y is premultiplied by P, the result is
the fitted values in the least squares regression of y on X. This is also the projection of
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the vector y into the column space of X. (See Sections A3.5 and A3.7.) By multiplying
it out, you will find that, like M, P is symmetric and idempotent. Given the earlier results,
it also follows that M and P are orthogonal;

PM=MP =0.
Finally, as might be expected from (3-15)
PX=X.

As a consequence of (3-15) and (3-16), we can see that least squares partitions the
vector y into two orthogonal parts,

y = Py + My = projection + residual.

The result is illustrated in Figure 3.2 for the two variable case. The gray shaded plane is
the column space of X. The projection and residual are the orthogonal dotted rays. We
can also see the Pythagorean theorem at work in the sums of squares,

Yy =yPPy+yMMy
={y+ee

In manipulating equations involving least squares results, the following equivalent
expressions for the sum of squared residuals are often useful:

ee =yMMy =yMy =ye=¢Yy,
e€e=yy-bXXb=yy-bXy=yy-yXb.
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3.3 PARTITIONED REGRESSION AND PARTIAL
REGRESSION

It is common to specify a multiple regression model when, in fact, interest centers on
only one or a subset of the full set of variables. Consider the earnings equation discussed
in Example 2.2. Although we are primarily interested in the association of earnings and
education, age is, of necessity, included in the model. The question we consider here is
what computations are involved in obtaining, in isolation, the coefficients of a subset of
the variables in a multiple regression (for example, the coefficient of education in the
aforementioned regression).
Suppose that the regression involves two sets of variables X; and X;. Thus,

y=Xp+e=Xif + X8, +¢.
What is the algebraic solution for b,? The normal equations are

O XX XX [b]  [Xy
7 ’ - 1 . 3-17
) {szl X5X | by | = | X0y (3-17)

A solution can be obtained by using the partitioned inverse matrix of (A-74). Alterna-
tively, (1) and (2) in (3-17) can be manipulated directly to solve for b,. We first solve
(1) for by:

b = X/ X)) Xy — X|X) X[ Xob, = (X X)X (y ~ Xoby).  (3-18)

This solution states that by is the set of coefficients in the regression of y on X, minus
a correction vector. We digress briefly to examine an important result embedded in
(3-18). Suppose that X| X, = 0. Then, by = (X} X;) !Xy, which is simply the coefficient
vector in the regression of y on X;. The general result, which we have just proved is the
following theorem.

e

THEOREM 3.2 Orthogonal Partitioned Regression

In the multiple linear least squares regression of y on two sets of variables X and
Xy, if the two sets of variables are orthogonal, then the separate coefficient vectors
can be obtained by separate regressions of y on X, alone and y on X; alone.

|

SEoBLEE

Note that Theorem 3.2 encompasses Theorem 3.1.
Now, inserting (3-18) in equation (2) of (3-17) produces

X5 X (X X)) 7' Xy — X5X (X[ X)X, Xob, + X5Xob, = Xy,
After collecting terms, the solution is
by = [X5(0— Xy (X)X0) ™ X))Xo] ™ (X5 (L — Xy (X[ X)) ' X))y]
= MIX) T H(XEMLY). (3-19)

The matrix appearing in the parentheses inside each set of square brackets is the “resid-
ual maker” defined in (3-14), in this case defined for a regression on the columns of X;.
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Thus, M, X, is a matrix of residuals; each column of M; X, is a vector of residuals in the
regression of the corresponding column of X; on the variables in X;. By exploiting the
fact that My, like M, is idempotent, we can rewrite (3-19) as

b, = (X;'X5)"'X5'y", | (3-20)
where
X; = M1X2 and y* = Mly

This result is fundamental in regression analysis.

THEOREM 3.3 Frisch-Waugh Theorem
In the linear least squares regression of vector y on two sets of variables, Xy and

X, the subvector b is the set of coefficients obtained when the residuals from a
regression of y on X, alone are regressed on the set of residuals obtained when
each column of X; is regressed on X;.

This process is commonly called partialing out or netting out the effect of Xj.
For this reason, the coefficients in a multiple regression are often called the partial
regression coefficients. The application of this theorem to the computation of a single
coefficient as suggested at the beginning of this section is detailed in the following:
Consider the regression of y on a set of variables X and an additional variable z. Denote
the coefficients b and c.

Zl el

COROLLARY 3.3.1 Individual Regression Coefficients

The coefficient on z in a multiple regression of y on W = [X, z] is computed as
c=(ZMz) ' (zZMy) = (z*’z*)‘lz*'y* where 2" and y* are the residual vectors from
least squares regressions of z and y on X;z* = Mz and y* = My where M is
defined in (3-14).

Interms of Example 2.2, we could obtain the coefficient on education in the multiple
regression by first regressing earnings and education on age (or age and age squared)
and then using the residuals from these regressions in a simple regression. In a classic
application of this latter observation, Frisch and Waugh (1933) (who are credited with
the result) noted that in a time-series setting, the same results were obtained whether
aregression was fitted with a time-trend variable or the data were first “detrended” by
netting out the effect of time, as noted earlier, and using just the detrended data in a

simple regression.’

ZRecall our earlier investment example.
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As an application of these results, consider the case in which X is i, a column of
1s in the first column of X. The solution for b, in this case will then be the slopes in a
regression with a constant term. The coefficient in a regression of any variable z on i is
[('i]~'i'z = Z, the fitted values are iz, and the residuals are z; — Z. When we apply this to
our previous results, we find the following.

i

COROILLARY 3.3.2 Regression with a Constant Term

The slopes in a multiple regression that contains a constant term are obtained
by transforming the data to deviations from their means and then regressing the
variable y in deviation form on the explanatory variables, also in deviation form.

R

L

i

[We used this result in (3-8).] Having obtained the coefficients on X,, how can we
recover the coefficients on X, (the constant term)? One way is to repeat the exercise
while reversing the roles of X; and X,. But there is an easier way. We have already
solved for b,. Therefore, we can use (3-18) in a solution for by. If X] is just a column of
1s, then the first of these produces the familiar result

bh=y—-Xby—---—xgbk (3-21)

[which is used in (3-7).]

3.4 PARTIAL REGRESSION AND PARTIAL

CORRELATION COEFFICIENTS

The use of multiple regression involves a conceptual experiment that we might not be
able to carry out in practice, the ceteris paribus analysis familiar in economics. To pursue
Example 2.2, a regression equation relating earnings to age and education enables
us to do the conceptual experiment of comparing the earnings of two individuals of
the same age with different education levels, even if the sample contains no such pair
of individuals. 1t is this characteristic of the regression that is implied by the term
partial regression coefficients. The way we obtain this result, as we have seen, is first
to regress income and education on age and then to compute the residuals from this
regression. By construction, age will not have any power in explaining variation in these
residuals. Therefore, any correlation between income and education after this “purging”
is independent of (or after removing the effect of) age.

The same principle can be applied to the correlation between two variables. To
continue our example, to what extent can we assert that this correlation reflects a direct
relationship rather than that both income and education tend, on average, to rise as
individuals become older? To find out, we would use a partial correlation coefficient,
which is computed along the same lines as the partial regression coefficient. In the con-
text of our example, the partial correlation coefficient between income and education,
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controlling for the effect of age, is obtained as follows:

1. y, = the residuals in a regression of income on a constant and age.
2. z, =the residuals in a regression of education on a constant and age.
3. The partial correlation r}, is the simple correlation between y, and z..

This calculation might seem to require a formidable amount of computation. There
is, however, a convenient shortcut. Once the multiple regression is computed, the ¢ ratio
in (4-13) and (4-14) for testing the hypothesis that the coefficient equals zero (e.g., the
last column of Table 4.2) can be used to compute

2

*2 z

= = . 3-22
Tz t2 + degrees of freedom 3-22)

The proof of this less than perfectly intuitive result will be useful to illustrate some
results on partitioned regression and to put into context two very useful results from
least squares algebra. As in Corollary 3.3.1, let W denote the n x (K + 1) regressor
matrix [X, z] and let M = I — X(X’X)~!X". We assume that there is a constant term in
X, so that the vectors of residuals y, = My and z, = Mz will have zero sample means.
The squared partial correlation is

*2 — (z;y*)Z

Y (Zz)(YLYe)
Let ¢ and u denote the coefficient on z and the vector of residuals in the multiple
regression of y on W. The squared ¢ ratio in (3-22) is

C2

v'u o1
T (K1) WW)i i k4

where (W’W)}EHYKJrl isthe (K + 1) (last) diagonal element of (W’W)~!, The partitioned
inverse formula in (A-74) can be applied to the matrix [X, z|'[X, z]. This matrix appears
in (3-17), with X; = X and X, = z. The result is the inverse matrix that appears in (3-19)
and (3-20), which implies the first important result.

2 _
=

3

S

THEOREM 3.4 Diagonal Elements of the Inverse

of a Moment Matrix
IfW = [X, z], then the last diagonal element of (W'W)~lis (zMz)™! = (z_z,) 7!,
wherez, = Mzand M =1 - X(X'X)"'X'.

o

R

(Note that this result generalizes the development in Section A.2.8 where X is only
the constant term.) If we now use Corollary 3.3.1 and Theorem 3.4 for ¢, after some
manipulation, we obtain

2 2 %2
t; (Z; \D)) Fyz

Zrn—-K+D] @y +WwEZz) r+ww/yy.’
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where
u=y—Xd-zc

is the vector of residuals when y is regressed on X and z. Note that unless X'z = 0,
d will not equal b = (X’X)"'X’y. (See Section 8.2.1.) Moreover, unless ¢ = 0, u will not
equal e = y — Xb. Now we have shown in Corollary 3.3.1 that ¢ = (zz.)"'(z,y.). We
also have, from (3-18), that the coefficients on X in the regression of y on W = [X, z]
are :

d=XX)"'X'(y—2zc) =b — (X'X)"'X'zc.
So, inserting this expression for d in that for u gives
u=y-Xb+XXX)"'Xz—zc=e—-Mzc =e—zc.
Now
vu=e'e+c(z.z,) —2e.

But e = My =y, and z_e = z,y, = ¢(Zz,). Inserting this in w'u gives our second useful
result.

THEOREM 3.5 Change in the Sum of Squares When a Variable Is
Added to a Regression

If €'e is the sum of squared residuals when y is regressed on X and w'u is the sum

of squared residuals when 'y is regressed on X and z, then

wu=ee—ci(zz,) < e, (3-23)

where ¢ is the coefficient on 1z in the long regression and z,=
[I — X(X'X)"1X"]z is the vector of residuals when z is regressed on X.

Returning to our derivation, we note that e’e = y'y, and ¢?(z.z,) = (Z.y+)?/ (Z.z.).
Therefore, (W'n)/(y,y.) =1 — r;f and we have our result.
Example 3.1 Partial Correlations
For the data the application in Section 3.2.2, the simple correlations between investment and
the regressors r, and the partial correlations r;, between investment and the four regressors
(given the other variables) are listed in Table 3.2. As is clear from the table, there is no
necessary relation between the simple and partial correlation coefficients. One thing worth

Simple Partial

Correlation Correlation
Time 0.7496 —0.9360
GNP 0.8632 0.9680
Interest 0.5871 —0.5167

Inflation 0.4777 —0.0221
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noting is the signs of the coefficients. The signs of the partial correlation coefficients are the
same as the signs of the respective regression coefficients, three of which are negative. All
the simple correlation coefficients are positive because of the latent “effect” of time.

3.5 GOODNESS OF FIT AND THE ANALYSIS
OF VARIANCE

The original fitting criterion, the sum of squared residuals, suggests a measure of the
fit of the regression line to the data. However, as can easily be verified, the sum of
squared residuals can be scaled arbitrarily just by multiplying all the values of y by the
desired scale factor. Since the fitted values of the regression are based on the values
of x, we might ask instead whether variation in x is a good predictor of variation in y.
Figure 3.3 shows three possible cases for a simple linear regression model. The measure
of fit described here embodies both the fitting criterion and the covariation of y and x.

Variation of the dependent variable is defined in terms of deviations from its mean,
(i — ¥). The total variation in y is the sum of squared deviations:
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In terms of the regression equation, we may write the full set of observations as
y=Xb+e=§+e. (3-24)
For an individual observation, we have
yi=9; +e =xb+e.

If the regression contains a constant term, then the residuals will sum to zero and the
mean of the predicted values of y; will equal the mean of the actual values. Subtracting
y from both sides and using this result and result 2 in Section 3.2.3 gives

Vi—y=9—7+e=(x—xX'b+e.
Figure 3.4 illustrates the computation for the two-variable regression. Intuitively, the
regression would appear to fit well if the deviations of y from its mean are more largely
accounted for by deviations of x from its mean than by the residuals. Since both terms in

this decomposition sum to zero, to quantify this fit, we use the sums of squares instead.
For the full set of observations, we have

M’y = M"Xb + MPe,

where M is the n x n idempotent matrix that transforms observations into deviations
from sample means. (See Section A.2.8.) The column of M"X corresponding to the
constant term is zero, and, since the residuals already have mean zero, M’e = e. Then,
since M°X = €'X = 0, the total sum of squares is

yM'y = bX'M’Xb + ¢e.

Write this as total sum of squares = regression sum of squares + error sum of squares,
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or
SST =SSR + SSE. (3-25)

(Note that this is precisely the partitioning that appears at the end of Section 3.2.4.)

We can now obtain a measure of how well the regression line fits the data by
using the

. . .. SSR bX'M°Xb e'e
coefficient of determination: SST = yMiy 1 Y My’ (3-20)

The coefficient of determination is denoted R%. As we have shown, it must be between
0 and 1, and it measures the proportion of the total variation in y that is accounted for
by variation in the regressors. It equals zero if the regression is a horizontal line, that
is, if all the elements of b except the constant term are zero. In this case, the predicted
values of y are always j, so deviations of x from its mean do not translate into different
predictions for y. As such, x has no explanatory power. The other extreme, R®=1,
occurs if the values of x and y all liec in the same hyperplane (on a straight line for a
two variable regression) so that the residuals are all zero. If all the values of y; lie on a
vertical line, then R? has no meaning and cannot be computed.

Regression analysis is often used for forecasting. In this case, we are interested in
how well the regression model predicts movements in the dependent variable. With this
in mind, an equivalent way to compute R’ is also useful. First

; b’X'M’Xb = M3,
but § = Xb,y = § +e,M’e = e, and X'e = 0, so ¥M’§ = §y'M’y. Multiply R* =
¥M'y/yM'y = yM'y/yM% by 1 = ¢¥M'y/§’ MOy to obtain
_ B0 -»@ - PP
[ZiCyi = PPI[Z (9 = 71
which is the squared correlation between the observed values of y and the predictions
produced by the estimated regression equation.

3-27)

Example 3.2 Fit of a Consumption Function

The data plotted in Figure 2.1 are listed in Appendix Table F2.1. For these data, where y is
C and x is X, we have y = 273.2727, X = 323.2727, S,, = 12,618.182, 5, = 12,300.182,
S,y = 8,423.182, so SST = 12,618.182,b = 8,423.182/12,300.182 = 0.6848014, SSR =
b2 S« = 5,768.2068, and SSE = SST—SSR = 6,849.975. Then R? = %S, /SST = 0.457135.
As can be seen in Figure 2.1, this is a moderate fit, although it is not particularly good
for aggregate time-series data. On the other hand, it is clear that not accounting for the
anomalous wartime data has degraded the fit of the model. This value is the R? for the model
indicated by the dotted line in the figure. By simply omitting the years 1942-1945 from the
sample and doing these computations with the remaining seven observations —the heavy
solid line—we obtain an R? of 0.93697. Alternatively, by creating a variable WAR which equals
1 inthe years 1942-1945 and zero otherwise and including this in the model, which produces
the model shown by the two solid lines, the R? rises to 0.94639.

We can summarize the calculation of R? in an analysis of variance table, which
might appear as shown in Table 3.3.

Example 3.3 Analysis of Variance for an Investment Equation
The analysis of variance table for the investment equation of Sectlon 3.2.2 is given in
Table 3.4. :
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Source Degrees of Freedom Mean Square
Regression b’X'y — ny? K — 1 (assuming a constant term)
Residual ee n—K s?
Total yy — ny* n—1 Sy/n—1)=s;
Coefficient of k R =1—¢e/Yy—niy)

determination

r the Inyestment Equation

Source Degrees of Freedom Mean Square
Regression 0.0159025 4 0.003976
Residual 0.0004508 10 0.00004508
Total 0.016353 14 0.0011681

R? =0.0159025/0.016353 = 0.97245.

3.5.1 THE ADJUSTED R-SQUARED AND A MEASURE OF FIT

There are some problems with the use of R’ in analyzing goodness of fit. The first
concerns the number of degrees of freedom used up in estimating the parameters.
R? will never decrease when another variable is added to a regression equation. Equa-
tion (3-23) provides a convenient means for us to establish this result. Once again, we
are comparing a regression of y on X with sum of squared residuals €’e to a regression of
y on X and an additional variable z, which produces sum of squared residuals w'u. Recall
the vectors of residuals z, = Mz and y, = My = e, which implies that e’e = (y.y.). Let
¢ be the coefficient on z in the longer regression. Then ¢ = (z,z,) ™! (zy,), and inserting
this in (3-23) produces

’ 2
vu=c¢e— ((Zz*;% =ee(l— r;‘g) : (3-28)
where r;‘z is the partial correlation between y and z, controlling for X. Now divide
through both sides of the equality by yMCy. From (3-26), w'u/y'MCy is (1 — Rg,) for the
regression on X and z and e’e/y'M'y is (1 — R). Rearranging the result produces the

following:

THEOREM 3.6 Change in R> When a Variable Is Added

to a Regression
Let R,zgZ be the coefficient of determination in the regression of y on X and an
additional variable z, let Ry be the same for the regression of y on X alone, and
let 1}, be the partial correlation between 'y and z, controlling for X. Then

Ry,=Rx+(1—-Ry)r;2. (3-29)

SRR
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Thus, the R? in the longer regression cannot be smaller. It is tempting to exploit
this result by just adding variables to the model; R* will continue to rise to its limit
of 1.3 The adjusted R? (for degrees of freedom), which incorporates a penalty for these
results is computed as follows:

Rl ee/(n—K) ,
yMoy/(n — 1)

For computational purposes, the connection between R? and R? is

(3-30)

n-1
n— K

R=1-

(1 - R?.

The adjusted R? may decline when a variable is added to the set of independent variables.
Indeed, R? may even be negative. To consider an admittedly extreme case, suppose that
x and y have a sample correlation of zero. Then the adjusted R? will equal —1/(n — 2).
(Thus, the name “adjusted R-squared” is a bit misleading—as can be seen in (3-30),
R? is not actually computed as the square of any quantity.) Whether R rises or falls
depends on whether the contribution of the new variable to the fit of the regression
more than offsets the correction for the loss of an additional degree of freedom. The
general result (the proof of which is left as an exercise) is as follows.

THEOREM 3.7 Change in R> When a Variable Is Added

to a Regression
In a multiple regression, R* will fall (rise) when the variable x is deleted from the
regression if the t ratio associated with this variable is greater (less) than 1.

e

TR,

We have shown that R? will never fall when a variable is added to the regression.
We now consider this result more generally. The change in the residual sum of squares
when a set of variables X; is added to the regression is

’ ’ R
e112e1,2 = €€ — b2X2M1X2b2,

where we use subscript 1 to indicate the regression based on X alone and 1,2 to indicate
the use of both X; and X,. The coefficient vector b, is the coefficients on X, in the
multiple regression of y on X; and X;. [See (3-19) and (3-20) for definitions of b, and
M; ] Therefore,

eiel - b’QX'zM1X2b2 _ R2 4 béXéM]Xzbz
yM’y S yMy

Rlz’z = 1 -

3This result comes at a cost, however. The parameter estimates become progressively less precise as we do
so. We will pursue this result in Chapter 4.

4This measure is sometimes advocated on the basis of the unbiasedness of the two quantities in the fraction.
Since the ratio is not an unbiased estimator of any population quantity, it is difficult to justify the adjustment
on this basis. :
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which is greater than R? unless b, equals zero. (M;X; could not be zero unless X, was a
linear function of X, in which case the regression on X; and X; could not be computed.)
This equation can be manipulated a bit further to obtain

y’Mly béX'zM1X2b2

yMy  yMy

R, =R+

But yM,y = e/ e, so the first term in the product is 1 — R?. The second is the multiple
correlation in the regression of Mjy on M, Xy, or the partial correlation (after the effect
of Xy is removed) in the regression of y on X,. Collecting terms, we have

R, =R+ (1- Rf)rﬁz.l-

[This is the multivariate counterpart to (3-29).]

Therefore, it is possible to push R? as high as desired just by adding regressors.
This possibility motivates the use of the adjusted R-squared in (3-30), instead of R?
as a method of choosing among alternative models. Since R* incorporates a penalty
for reducing the degrees of freedom while still revealing an improvement in fit, one
possibility is to choose the specification that maximizes R”. It has been suggested that the
adjusted R-squared does not penalize the loss of degrees of freedom heavily enough.’
Some alternatives that have been proposed for comparing models (which we index
by j) are

- n+ K;
Ri:l— K](l_R?)’

n—=R;

which minimizes Amemiya’s (1985) prediction criterion,

e.e; K: K
PCi=— 1+~ ) =5} {1+
n—K; n n

and the Akaike and Bayesian information criteria which are given in (8-18) and (8-19).

3.5.2 R-SQUARED AND THE CONSTANT TERM IN THE MODEL

A second difficulty with R? concerns the constant term in the model. The proof that
0< R <1 requires X to contain a column of 1s. If not, then (1) M’ #e and
(2) eMX = 0, and the term 2¢'M°Xb in yM"y = (M’Xb + M'e)’(M"Xb + M'e)
in the preceding expansion will not drop out. Consequently, when we compute
R=1 e'e
S yMy’
the result is unpredictable. It will never be higher and can be far lower than the same

figure computed for the regression with a constant term included. It can even be negative.
Computer packages differ in their computation of R*. An alternative computation,

_ bXYy

—yMy’
is equally problematic. Again, this calculation will differ from the one obtained with the
constant term included; this time, R> may be larger than 1. Some computer packages

5See, for example, Amemiya (1985, pp. 50-51).
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bypass these difficulties by reporting a third “R?,” the squared sample correlation be-
tween the actual values of y and the fitted values from the regression. This approach
could be deceptive. If the regression contains a constant term, then, as we have seen,
all three computations give the same answer. Even if not, this last one will still produce
a value between zero and one. But, it is not a proportion of variation explained. On
the other hand, for the purpose of comparing models, this squared correlation might
well be a useful descriptive device. It is important for users of computer packages to be
aware of how the reported R’ is computed. Indeed, some packages will give a warning
in the results when a regression is fit without a constant or by some technique other
than linear least squares.

3.56.3 COMPARING MODELS

The value of R? we obtained for the consumption function in Example 3.2 seems high
in an absolute sense. Is it? Unfortunately, there is no absolute basis for comparison.
In fact, in using aggregate time-series data, coefficients of determination this high are
routine. In terms of the values one normally encounters in cross sections, an R> of 0.5
is relatively high. Coefficients of determination in cross sections of individual data as
high as 0.2 are sometimes noteworthy. The point of this discussion is that whether a
regression line provides a good fit to a body of data depends on the setting.

Little can be said about the relative quality of fits of regression lines in different
contexts or in different data sets even if supposedly generated by the same data gener-
ating mechanism. One must be careful, however, even in a single context, to be sure to
use the same basis for comparison for competing models. Usually, this concern is about
how the dependent variable is computed. For example, a perennial question concerns
whether a linear or loglinear model fits the data better. Unfortunately, the question
cannot be answered with a direct comparison. An R’ for the linear regression model is
different from an R? for the loglinear model. Variation in y is different from variation
in In y. The latter R* will typically be larger, but this does not imply that the loglinear
model is a better fit in some absolute sense.

It is worth emphasizing that R’ is a measure of linear association between x and y.
For example, the third panel of Figure 3.3 shows data that might arise from the model

yi=a+px—y)P+e.

(The constant y allows x to be distributed about some value other than zero.) The
relationship between y and x in this model is nonlinear, and a linear regression would
find no fit.

A final word of caution is in order. The interpretation of R* as a proportion of
variation explained is dependent on the use of least squares to compute the fitted
values. It is always correct to write

Yi—y=@i—-P+e
regardless of how j; is computed. Thus, one might use §; = exp(ﬁq}i) from a loglinear
model in computing the sum of squares on the two sides, however, the cross-product
term vanishes only if least squares is used to compute the fitted values and if the model

contains a constant term. Thus, the cross-product term has been ignored in computing
R’ for the loglinear model. Only in the case of least squares applied to a linear equation
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with a constant term can R? be interpreted as the proportion of variation in y explained
by variation in x. An analogous computation can be done without computing deviations
from means if the regression does not contain a constant term. Other purely algebraic
artifacts will crop up in regressions without a constant, however. For example, the value
of R? will change when the same constant is added to each observation on y, but it
is obvious that nothing fundamental has changed in the regression relationship. One
should be wary (even skeptical) in the calculation and interpretation of fit measures for
regressions without constant terms.

3.6 SUMMARY AND CONCLUSIONS

This chapter has described the purely algebraic exercise of fitting a line (hyperplane) to
a set of points using the method of least squares. We considered the primary problem
first, using a data set of n observations on K variables. We then examined several aspects
of the solution, including the nature of the projection and residual maker matrices and
several useful algebraic results relating to the computation of the residuals and their
sum of squares. We also examined the difference between gross or simple regression
and correlation and multiple regression by defining “partial regression coefficients” and
“partial correlation coefficients.” The Frisch-Waugh Theorem (3.3) is a fundamentally
useful tool in regression analysis which enables us to obtain in closed form the expression
for a subvector of a vector of regression coefficients. We examined several aspects of
the partitioned regression, including how the fit of the regression model changes when
variables are added to it or removed from it. Finally, we took a closer look at the
conventional measure of how well the fitted regression line predicts or “fits” the data.

Key Terms and Concepts

¢ Adjusted R-squared ¢ Moment matrix e Prediction criterion
¢ Analysis of variance ¢ Multiple correlation ¢ Population quantity
¢ Bivariate regression ¢ Multiple regression ¢ Population regression
o Coefficient of determination e Netting out ¢ Projection
¢ Disturbance * Normal equations ¢ Projection matrix
» Fitting criterion » Orthogonal regression ¢ Residual
o Frisch-Waugh theorem e Partial correlation ¢ Residual maker
¢ Goodness of fit coefficient ¢ Total variation
¢ Least squares e Partial regression coefficient
¢ Least squares normal e Partialing out
equations e Partitioned regression
Exercises

1. The Two Variable Regression. For the regression model y = « + 8x + ¢,
a. Show that the least squares normal equations imply Z;e; = 0 and X;x;¢; = 0.
b. Show that the solution for the constant term is @ = y — bX.
c. Show that the solution for bis b = [ (o — ©) (% — PI/[Prey (i — )]
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d. Prove that these two values uniquely minimize the sum of squares by showing
that the diagonal elements of the second derivatives matrix of the sum of squares
with respect to the parameters are both positive and that the determinant is
4n[(>°7_, x7) —n¥?] = 4n[>_7_ (x; — ©)?], which is positive unless all values of
x are the same.

. Change in the sum of squares. Suppose that b is the least squares coefficient vector

in the regression of y on X and that ¢ is any other K x 1 vector. Prove that the

difference in the two sums of squared residuals is

(y — Xo)'(y — X¢) — (y — Xb)' (y — Xb) = (¢ — b)’X'X(c — b).

Prove that this difference is positive.

. Linear Transformations of the data. Consider the least squares regression of y on
K variables (with a constant) X. Consider an alternative set of regressors Z = XP,
where P is a nonsingular matrix. Thus, each column of Z is a mixture of some of the
columns of X. Prove that the residual vectors in the regressions of y on X and y on
Z are identical. What relevance does this have to the question of changing the fit of
a regression by changing the units of measurement of the independent variables?
. Partial Frisch and Waugh. In the least squares regression of y on a constant and X,
to compute the regression coefficients on X, we can first transform y to deviations
from the mean y and, likewise, transform each column of X to deviations from the
respective column mean; second, regress the transformed y on the transformed X
without a constant. Do we get the same result if we only transform y? What if we
only transform X?

. Residual makers. What is the result of the matrix product M;M where M, is defined
in (3-19) and M is defined in (3-14)?

. Adding an observation. A data set consists of n observations on X,, and y,. The
least squares estimator based on these n observations is b, = (X, X,) "' X" y,.
Another observation, x; and y;, becomes available. Prove that the least squares
estimator computed using this additional observation is

1
nt 14 %X X,) "%,

b.;=h X, X) % (s — Xby).

Note that the last term is e, the residual from the prediction of y; using the coeffi-
cients based on X, and b,,. Conclude that the new data change the results of least
squares only if the new observation on y cannot be perfectly predicted using the
information already in hand.

. Deleting an observation. A common strategy for handling a case in which an obser-
vation is missing data for one or more variables is to fill those missing variables with
0s and add a variable to the model that takes the value 1 for that one observation
and 0 for all other observations. Show that this ‘strategy’ is equivalent to discard-
ing the observation as regards the computation of b but it does have an effect on
R’. Consider the special case in which X contains only a constant and one variable.
Show that replacing missing values of x with the mean of the complete observations
has the same effect as adding the new variable.

. Demand system estimation. Let Y denote total expenditure on consumer durables,
nondurables, and services and Ey, E,, and E; are the expenditures on the three
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10.

11.

12.

13.

categories. As defined, Y = E; + E, + E;. Now, consider the expenditure system
Ey =ag+ BaY + VaaPi + Van Po + vas s + €4,
By =0, + B, Y+ vua B + Vo By + us B+ €0,
E =oy+ BY+ VsaPa+ YsnPo + Vs B + &5.

Prove that if all equations are estimated by ordinary least squares, then the sum
of the expenditure coefficients will be 1 and the four other column sums in the
preceding model will be zero.

Change in adjusted R®. Prove that the adjusted R? in (3-30) rises (falls) when
variable x is deleted from the regression if the square of the ¢ ratio on x; in the
multiple regression is less (greater) than 1.

Regression without a constant. Suppose that you estimate a multiple regression
first with then without a constant. Whether the R? is higher in the second case than
the first will depend in part on how it is computed. Using the (relatively) standard
method R? = 1 — (¢’e/y’M%y), which regression will have a higher R??

Three variables, N, D, and Y, all have zero means and unit variances. A fourth
variableis C = N + D. In the regression of C on Y, the slope is 0.8. In the regression
of C on N, the slope is 0.5. In the regression of D on Y, the slope is 0.4. What is the
sum of squared residuals in the regression of C on D? There are 21 observations
and all moments are computed using 1/(n — 1) as the divisor.

Using the matrices of sums of squares and cross products immediately preceding
Section 3.2.3, compute the coefficients in the multiple regression of real investment
on a constant, real GNP and the interest rate. Compute R%.

In the December, 1969, American Economic Review (pp. 886-896), Nathaniel Leff
reports the following least squares regression results for a cross section study of the
effect of age composition on savings in 74 countries in 1964:

InS/Y =7.3439 +0.1596In Y/N + 0.02541n G — 1.35201n D; — 0.39901n D,
InS/N = 8.7851 + 1.1486In Y/N + 0.02651n G — 1.34381n D; — 0.3966In D,

where S/Y = domestic savings ratio, S/ N = per capita savings, Y/N = per capita
income, D, = percentage of the population under 15, D, = percentage of the popu-
lation over 64, and G = growth rate of per capita income. Are these results correct?
Explain.
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FINITE-SAMPLE PROPERTIES
OF THE LEAST SOQOUARES
- ESTIMATOR

LYY=

INTRODUCTION

Chapter 3 treated fitting the linear regression to the data as a purely algebraic exercise.
We will now examine the least squares estimator from a statistical viewpoint. This
chapter will consider exact, finite-sample results such as unbiased estimation and the
precise distributions of certain test statistics. Some of these results require fairly strong
assumptions, such as nonstochastic regressors or normally distributed disturbances. In
the next chapter, we will turn to the properties of the least squares estimator in more
general cases. In these settings, we rely on approximations that do not hold as exact
results but which do improve as the sample size increases.

There are other candidates for estimating 8. In a two-variable case, for example, we
might use the intercept, a, and slope, b, of the line between the points with the largest
and smallest values of x. Alternatively, we might find the  and b that minimize the sum
of absolute values of the residuals. The question of which estimator to choose is usually
based on the statistical properties of the candidates, such as unbiasedness, efficiency,
and precision. These, in turn, frequently depend on the particular distribution that we
assume produced the data. However, a number of desirable properties can be obtained
for the least squares estimator even without specifying a particular distribution for the
disturbances in the regression.

In this chapter, we will examine in detail the least squares as an estimator of the
model parameters of the classical model (defined in the following Table 4.1). We begin
in Section 4.2 by returning to the question raised but not answered in Footnote 1, Chap-
ter 3, that is, why least squares? We will then analyze the estimator in detail. We take
Assumption Al, linearity of the model as given, though in Section 4.2, we will consider
briefly the possibility of a different predictor for y. Assumption A2, the identification
condition that the data matrix have full rank is considered in Section 4.9 where data
complications that arise in practice are discussed. The near failure of this assumption
is a recurrent problem in “real world” data. Section 4.3 is concerned with unbiased
estimation. Assumption A3, that the disturbances and the independent variables are
uncorrelated, is a pivotal resultin this discussion. Assumption A4, homoscedasticity and
nonautocorrelation of the disturbances, in contrast to A3, only has relevance to whether
least squares is an optimal use of the data. As noted, there are alternative estimators
available, but with Assumption A4, the least squares estimator is usually going to be
preferable. Sections 4.4 and 4.5 present several statistical results for the least squares
estimator that depend crucially on this assumption. The assumption that the data in X
are nonstochastic, known constants, has some implications for how certain derivations

41
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TABLE 4.1

Al. Linearity: y; = x;181 + xnf2 + - - + BrXix + €.

A2. Full rank: The n x K sample data matrix, X has full column rank.

A3. Exogeneity of the independent variables: E[¢; | x;;, X2, ..., x;x] =0, i, j=1,...,n
There is no correlation between the disturbances and the independent variables.

Ad4. Homoscedasticity and nonautocorrelation: Each disturbance, ¢; has the same finite
variance, o2 and is uncorrelated with every other disturbance, & i

AS. Exogenously generated data (x;1, x;2, ..., xx)i=1,...,n
A6. Normal distribution: The disturbances are normally distributed.

proceed, but in practical terms, is a minor consideration. Indeed, nearly all that we do
with the regression model departs from this assumption fairly quickly. It serves only as
a useful departure point. The issue is considered in Section 4.5. Finally, the normality
of the disturbances assumed in A6 is crucial in obtaining the sampling distributions of
several useful statistics that are used in the analysis of the linear model. We note that
in the course of our analysis of the linear model as we proceed through Chapter 9, all
six of these assumptions will be discarded.

4.2 MOTIVATING LEAST SQUARES

Ease of computation is one reason that least squares is so popular. However, there are
several other justifications for this technique. First, least squares is a natural approach
to estimation, which makes explicit use of the structure of the model as laid out in the
assumptions. Second, even if the true model is not a linear regression, the regression
line fit by least squares is an optimal linear predictor for the dependent variable. Thus, it
enjoys a sort of robustness that other estimators do not. Finally, under the very specific
assumptions of the classical model, by one reasonable criterion, least squares will be
the most efficient use of the data. We will consider each of these in turn.

4.21 THE POPULATION ORTHOGONALITY CONDITIONS

Let x denote the vector of independent variables in the population regression model and
for the moment, based on assumption A5, the data may be stochastic or nonstochastic.
Assumption A3 states that the disturbances in the population are stochastically or-
thogonal to the independent variables in the model; that is, E[e | x] =0. It follows that
Covlx, ¢] =0. Since (by the law of iterated expectations—Theorem B.1) E{E[¢ |x]} =
E[e] = 0, we may write this as

ExE.[xe] = ExE)[x(y —X'B)] =0
or
EE[xy] = Edxx]B. @)

(The right-hand side is not a function of y so the expectation is taken only over x.) Now,
recall the least squares normal equations, X'y = X'Xb. Divide this by n and write it as
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a summation to obtain

(% Zx,-yi) = (}1 Zx,-x;> b. 42
i=1 i=1

Equation (4-1) is a population relationship. Equation (4-2) is a sample analog. Assuming
the conditions underlying the laws of large numbers presented in Appendix D are met,
the sums on the left hand and right hand sides of (4-2) are estimators of their counterparts
in (4-1). Thus, by using least squares, we are mimicking in the sample the relationship in
the population. We’ll return to this approach to estimation in Chapters 10 and 18 under
the subject of GMM estimation.

4.2.2 MINIMUM MEAN SQUARED ERROR PREDICTOR

As an alternative approach, consider the problem of finding an optimal linear predictor
for y. Once again, ignore Assumption A6 and, in addition, drop Assumption Al that
the conditional mean function, E [y |x] is linear. For the criterion, we will use the mean
squared error rule, so we seek the minimum mean squared error linear predictor of y,
which we’ll denote X'y . The expected squared error of this predictor is

MSE = E E [y — x'y]>.
This can be written as
b2
MSE = E,x{y — E[y|x]}2+Ey_x{E[y|x]—xy} :

We seek the y that minimizes this expectation. The first term is not a function of y, so
only the second term needs to be minimized. Note that this term is not a function of y,
so the outer expectation is actually superfluous. But, we will need it shortly, so we will
carry it for the present. The necessary condition is

VEyE{[E(y|x) —xy]’} [ Ey|x) — X’;’F}
ay ay
= —2E,E{x[E(y|x) —x'y]} =0.

Note that we have interchanged the operations of expectation and differentiation in
the middle step, since the range of integration is not a function of y. Finally, we have
the equivalent condition

:EyEx{

E,Ex[xE(y |x)] = E, E[xx']y.

The left hand side of thisresultis £ E,[x E(y | x)] = Cov[x, E(y | x) |+ E [X| Ex[E(y | x)] =
Cov[x, y] + E[x]E[y] = ExE,[xy]. (We have used theorem B.2.) Therefore, the neces-
sary condition for finding the minimum MSE predictor is

EE)[xy] = EE,[xx]y. @3)

This is the same as (4-1), which takes us to the least squares condition once again.
Assuming that these expectations exist, they would be estimated by the sums in
(4-2), which means that regardless of the form of the conditional mean, least squares
is an estimator of the coefficients of the minimum expected mean squared error lin-
ear predictor. We have yet to establish the conditions necessary for the if part of the
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theorem, but this is an opportune time to make it explicit:

SR

THEOREM 4.1 Minimum Mean Squared Error Predictor |
If the data generating mechanism generating (X;, ¥)i=1... , Is such that the law of %
large numbers applies to the estimators in (4-2) of the matrices in (4-1), then the %
minimum expected squared error linear predictor of y; is estimated by the least
squares regression line.

BB

4.2.3 MINIMUM VARIANCE LINEAR UNBIASED ESTIMATION

Finally, consider the problem of finding a linear unbiased estimator. If we seek the one
which has smallest variance, we will be led once again to least squares. This proposition
will be proved in Section 4.4.

The preceding does not assert that no other competing estimator would ever be
preferable to least squares. We have restricted attention to linear estimators. The result
immediately above precludes what might be an acceptably biased estimator. And, of
course, the assumptions of the model might themselves not be valid. Although AS and
A6 are ultimately of minor consequence, the failure of any of the first four assumptions
would make least squares much less attractive than we have suggested here.

4.3 UNBIASED ESTIMATION

The least squares estimator is unbiased in every sample. To show this, write
b=XX)"Xy=X'X)'X'(XB +¢) = g+ (XX) Xe. 4-4)

Now, take expectations, iterating over X;

Eb|X] =8+ E[X'X) X'e|X].
By Assumption A3, the second term is 0, so

Eb|X]=8.

Therefore,

E[b] = Ex{E[b|X]} = Ex[B] = B.

The interpretation of this result is that for any particular set of observations, X, the least
squares estimator has expectation . Therefore, when we average this over the possible
values of X we find the unconditional mean is 8 as well.

Example 4.1 The Sampling Distribution of a Least Squares Estimator
The following sampling experiment, which can be replicated in any computer program that
provides a random number generator and a means of drawing a random sample of observa-
tions from a master data set, shows the nature of a sampling distribution and the implication of
unbiasedness. We drew two samples of 10,000 random draws on w; and x; from the standard



CHAPTER 4 4 Finite-Sample Properties of the Least Squares Estimator 45

100
=== —— ] -*———————*f ——————
&
g ]
g NF—————————— - 1 - ———
=
L 3
M=
0 P e s e e e e e LS B S B R R T
338 388 438 488 538 .588 .638 .688

b
FIGURE 4.1 Histogram for Sampled Least Squares Regression

normal distribution (mean zero, variance 1). We then generated a set of ¢;s equal to 0.5w; and
¥i =0.540.5x; 4+ &;. We take this to be our population. We then drew 500 random samples
of 100 observations from this population, and with each one, computed the least squares
slope (using at replication r, b, = [Zg(xj, —)?r)y/r]/[z;ii {(x;r — %:)2]). The histogram in
Figure 4.1 shows the result of the experiment. Note that the distribution of slopes has a
mean roughly equal to the “true value” of 0.5, and it has a substantial variance, reflecting the
fact that the regression slope, like any other statistic computed from the sampile, is a random
variable. The concept of unbiasedness relates to the central tendency of this distribution of
values obtained in repeated sampling from the population.

4.4 THE VARIANCE OF THE LEAST SQUARES

ESTIMATOR AND THE GAUSS MARKOV
THEOREM

If the regressors can be treated as nonstochastic, as they would be in an experimental
situation in which the analyst chooses the values in X, then the sampling variance
of the least squares estimator can be derived by treating X as a matrix of constants.
Alternatively, we can allow X to be stochastic, do the analysis conditionally on the
observed X, then consider averaging over X as we did in the preceding section. Using
(4-4) again, we have

b=XX)"'X'(XB+e) =8+ (XX)'Xe. 4-5)

Since we can write b = 8 + Ae, where A is (X’X)~1X’, b is a linear function of the
disturbances, which by the definition we will use makes it a linear estimator. As we have
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seen, the expected value of the second term in (4-5) is 0. Therefore, regardless of the
distribution of &, under our other assumptions, b is a linear, unbiased estimator of 8. The
covariance matrix of the least squares slope estimator is

Var[b|X] = E[(b - B)(b — B) | X]
= E[(X'X)"'X'ee’X(X'X) ! | X]
= X'X)" X' E[ee’ | X]X(X'X) !
= X'X) X' (¢ DXX'X) ™!
=o2(X'X)L.
Example 4.2 Sampling Variance in the Two-Variable Regression Model

Suppose that X contains only a constant term (column of 1s) and a single regressor x. The
lower right element of a2(X'X) " is

0,2

27:1 (xi —X)? .

Note, in particular, the denominator of the variance of b. The greater the variation in x, the
smaller this variance. For example, consider the problem of estimating the slopes of the two
regressions in Figure 4.2. A more precise result will be obtained for the data in the right-hand
panel of the figure.

Var[b|x] =Var[b— g|x] =

We will now obtain a general result for the class of linear unbiased estimators of 8.
Let by = Cy be another linear unbiased estimator of 8, where Cis a K x n matrix. If by
is unbiased, then

E[Cy|X] = E[(CXB + Ce) | X] = B,

which implies that CX = L. There are many candidates. For example, consider using just
the first K (or, any K) linearly independent rows of X. Then C = [Xj! : 0], where X!
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is the transpose of the matrix formed from the K rows of X. The covariance matrix of
bo can be found by replacing (X'X) !X’ with Cin (4-5); the result is Var[bg | X] = o*CC".
Now let D = C — (X’X)"'X’ so Dy = by — b. Then,

Var[by | X] = o?[(D + (X'X)"'X)(D + X'X)'X)'].
We know that CX = I = DX + (X’X)~1(X’X), so DX must equal 0. Therefore,
Var[by | X] = 62(X'’X)”" 4+ 0?DD’ = Var[b | X] + o’DD'.
Since a quadratic form in DD’ is ¢'DD’q = z'z > 0, the conditional covariance matrix
of by equals that of b plus a nonnegative definite matrix. Therefore, every quadratic

form in Var[byg | X] is larger than the corresponding quadratic form in Var[b | X], which
implies a very important property of the least squares coefficient vector.

R B e

THEOREM 4.2 Gauss-Markov Theorem

In the classical linear regression model with regressor matrix X, the least squares
estimator b is the minimum variance linear unbiased estimator of B. For any
vector of constants w, the minimum variance linear unbiased estimator of W in
the classical regression model is w'b, where b is the least squares estimator.

The proof of the second statement follows from the previous derivation, since the
variance of w'b is a quadratic form in Var[b | X], and likewise for any by, and proves
that each individual slope estimator by is the best linear unbiased estimator of gy. (Let
w be all zeros except for a one in the kth position.) The theorem is much broader than
this, however, since the result also applies to every other linear combination of the ele-
ments of 8.

e

4.5 THE IMPLICATIONS OF STOCHASTIC
REGRESSORS

The preceding analysis is done conditionally on the observed data. A convenient method
of obtaining the unconditional statistical properties of b is to obtain the desired results
conditioned on X first, then find the unconditional result by “averaging” (e.g., by in-
tegrating over) the conditional distributions. The crux of the argument is that if we
can establish unbiasedness conditionally on an arbitrary X, then we can average over
X’s to obtain an unconditional result. We have already used this approach to show
the unconditional unbiasedness of b in Section 4.3, so we now turn to the conditional
variance. :
The conditional variance of b is

Var[b | X] = 62(X’X) .
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For the exact variance, we use the decomposition of variance of (B-70):
| Var[b] = Ex[Var[b|X]] + Varx[E[b| X]].
The second term is zero since E[b|X] = g8 for all X, so
Var[b] = Ex[c*(X'X)"!] = o? Ex[(XX)7!].

Our earlier conclusion is altered slightly. We must replace (X'X)~! with its expected
value to get the appropriate covariance matrix, which brings a subtle change in the
interpretation of these results. The unconditional variance of b can only be described
in terms of the average behavior of X, so to proceed further, it would be necessary to
make some assumptions about the variances and covariances of the regressors. We will
return to this subject in Chapter 5.

We showed in Section 4.4 that ’ R S

Var[b | X] < Var[by | X]

for any by # b and for the specific X in our sample. But if this inequality holds for every
particular X, then it must hold for

Var[b] = Ex[Var[b|X]].

That is, if it holds for every particular X, then it must hold over the average value(s)
of X.

The conclusion, therefore, is that the important results we have obtained thus far for
the least squares estimator, unbiasedness, and the Gauss-Markov theorem hold whether
or not we regard X as stochastic.

THEOREM 4.3 Gauss—-Markov Theorem (Concluded)
In the classical linear regression model, the least squares estimator b is the

minimum variance linear unbiased estimator of B whether X is stochastic or
nonstochastic, so long as the other assumptions of the model continue to hold.

4.6 ESTIMATING THE VARIANCE
OF THE LEAST SQUARES ESTIMATOR

If we wish to test hypotheses about § or to form confidence intervals, then we will require
a sample estimate of the covariance matrix Var[b|X] = ¢2(X'X)~". The population
parameter o' remains to be estimated. Since o2 is the expected value of & and ¢; is an
estimate of ¢;, by analogy,

1 n
=1y e
ni:l
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would seem to be a natural estimator. But the least squares residuals are imperfect
estimates of their population counterparts; e; = y; —x'b = ¢ — X, (b — B). The estimator
is distorted (as might be expected) because B is not observed directly. The expected
square on the right-hand side involves a second term that might not have expected
value zero.

The least squares residuals are

e =My = M[X8 + ¢] = Me,
asMX = 0.[See (3-15).] An estimator of o will be based on the sum of squared residuals:
| e =e¢'Me. (4-6)
The expected value of this quadratic form is
Ele’e|X] = E[¢'Me | X].

The scalar ’Me is a 1 x 1 matrix, so it is equal to its trace. By using the result on cyclic
permutations (A-94),

E[tr(e'Me) | X] = E[tr(Mee’) | X].
Since M is a function of X, the result is
tr(ME[ee’ | X]) = tr(Mo’I) = o*tr(M).
The trace of M is
tr{l, — X(X'X)"'X'] = tr(L,) — tr[(X’X)"'X'X] = tr,,) — tr(Ix) = n — K.
Therefore, ‘
El¢e|X] = (n— K)o?,

so the natural estimator is biased toward zero, although the bias becomes smaller as the
sample size increases. An unbiased estimator of o2 is
2 e'e

=20 (7)

The estimator is unbiased unconditionally as well, since E[s?]= Fx{E[s?|X]} =
Ex[0?] =0?. The standard error of the regression is s, the square root of s2. With 2,
we can then compute ’

Est. Var[b | X] = s2(X’X)"L.

Henceforth, we shall use the notation Est. Var[-] to indicate a sample estimate of the
sampling variance of an estimator. The square root of the kth diagonal element of
this matrix, {[sz(X’X)‘l]kk}l/ ? is the standard error of the estimator by, which is often
denoted simply “the standard error of b;.”
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4.7 THE NORMALITY ASSUMPTION AND
BASIC STATISTICAL INFERENCE

To this point, our specification and analysis of the regression model is semiparametric
(see Section 16.3). We have not used Assumption A6 (see Table 4.1), normality of e,
in any of our results. The assumption is useful for constructing statistics for testing
hypotheses. In (4-5), b is a linear function of the disturbance vector e. If we assume that
¢ has a multivariate normal distribution, then we may use the results of Section B.10.2
and the mean vector and covariance matrix derived earlier to state that

b|X ~ N[B,s*X'X)71]. 4-8)

This specifies a multivariate normal distribution, so each element of b | X is normally
distributed:

bl X ~ N[ o2 (X' X)id |- (4-9)

The distribution of bis conditioned on X. The normal distribution of b in a finite sample is
a consequence of our specific assumption of normally distributed disturbances. Without
this assumption, and without some alternative specific assumption about the distribution
of &, we will not be able to make any definite statement about the exact distribution
of b, conditional or otherwise. In an interesting result that we will explore at length
in Chapter 5, we will be able to obtain an approximate normal distribution for b, with
or without assuming normally distributed disturbances and whether the regressors are
stochastic or not.

4.7.1 TESTING A HYPOTHESIS ABOUT A COEFFICIENT

Let S* be the kth diagonal element of (X’X)™!. Then, assuming normality,
b — B

52 Gkk
has a standard normal distribution. If o2 were known, then statistical inference about

Bi. could be based on zx. By using s? instead of o2, we can derive a statistic to use in
place of zx in (4-10). The quantity

(n—Kjs? _ee _ () m (%) (4-11)

o? o? o o

%= 4-10)

is an idempotent quadratic form in a standard normal vector (¢/0). Therefore, it has a
chi-squared distribution with rank (M) = trace(M) = n — K degrees of freedom.! The
chi-squared variable in (4-11) is independent of the standard normal variable in (4-10).
To prove this, it suffices to show that
b — ron_lwr/ €
PF _ xx)ix (%) 412)
o
is independent of (n — K)s?/o2. In Section B.11.7 (Theorem B.12), we found that a suf-
ficient condition for the independence of a linear form Lx and an idempotent quadratic

I'This fact is proved in Section B.10.3. _ R RN
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form x’Ax in a standard normal vector x is that LA = 0. Letting /o be the x, we find
that the requirement here would be that (X’X)~'X'M = 0. It does, as seen in (3-15). The
general result is central in the derivation of many test statistics in regression analysis.

THEOREM 4.4 Independence of b and s2 ]
If e is normally distributed, then the least squares coefficient estimator b is sta- i
ustically independent of the residual vector e and therefore, all functions of e, |
including s*.

[

Therefore, the ratio

(b = Br) Vo2 Sk b= B

- = 4-13
R/ TR STy Y Vet 13

has a ¢ distribution with (n — K) degrees of freedom.? We can use # to test hypotheses
or form confidence intervals about the individual elements of g.
A common test is whether a parameter gy is significantly different from zero. The
appropriate test statistic ‘
t= L3 4-14)
Shy
is presented as standard output with the other results by most computer programs. The
test is done in the usual way. This statistic is usually labeled the ¢ ratio for the estimator
br. If | b |/sp, > top, Where tys2 is the 100(1 — «/2) percent critical value from the ¢
distribution with (n — K) degrees of freedom, then the hypothesis is rejected and the
coefficient is said to be “statistically significant.” The value of 1.96, which would apply
for the 5 percent significance level in a large sample, is often used as a benchmark value
when a table of critical values is not immediately available. The ¢ ratio for the test of
_ the hypothesis that a coefficient equals zero is a standard part of the regression output
of most computer programs.

Example 4.3 Earnings Equation
Appendix Table F4.1 contains 753 observations used in Mroz’s (1987) study of labor supply
behavior of married women. We will use these data at several points below. Of the 753 indi-
viduals in the sample, 428 were participants in the formal labor market. For these individuals,
we will fit a semilog earnings equation of the form suggested in Example 2.2;

In earnings = By + B age + Bz age® + B4 education + s kids + ¢,

where earnings is hourly wage times hours worked, education is measured in years of school-
ing and kids is a binary variable which equals one if there are children under 18 in the house-
hold. (See the data description in Appendix F for details.) Regression results are shown in
Table 4.2. There are 428 observations and 5 parameters, so the t statistics have 423 degrees

2See (B-36) in Section B.4.2. It is the ratio of a standard normal variable to the square root of a chi-squared
variable divided by its degrees of freedom. -
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Sum of squared residuals: 599.4582
Standard error of the regression: 1.19044
R? based on 428 observations 0.040995
Variable Coefficient Standard Error t Ratio
Constant 3.24009 1.7674 ‘ 1.833
Age (0.20056 0.08386 2.392
Age? —0.0023147 0.00098688 —2.345
Education 0.067472 0.025248 2.672
Kids —0.35119 0.14753 —2.380

Estimated Covariance Matrix for b (e—n = times 10™")

Constant Age Age? Education Kids
3.12381

—0.14409 0.0070325
0.0016617 —8.23237e—5 9.73928e—7

—0.0092609 5.08549¢—5 —4.96761e—7 0.00063729
0.026749 —0.0026412 3.84102e-5 —5.46193e—5 0.021766

of freedom. For 95 percent significance levels, the standard normal value of 1.96 is appropri-
ate when the degrees of freedom are this large. By this measure, all variables are statistically
significant and signs are consistent with expectations. It will be interesting to investigate
whether the effect of Kids is on the wage or hours, or both. We interpret the schooling vari-
able to imply that an additional year of schooling is associated with a 6.7 percent increase in
earnings. The quadratic age profile suggests that for a given education level and family size,
earnings rise to the peak at —b,/(2bs) which is about 43 years of age, at which they begin
to decline. Some points to note: (1) Our selection of only those individuals who had posi-
tive hours worked is not an innocent sample selection mechanism. Since individuals chose
whether or not to be in the labor force, it is likely (almost certain) that earnings potential was
a significant factor, along with some other aspects we will consider in Chapter 22. (2) The
earnings equation is a mixture of a labor supply equation—hours worked by the individual,
and a labor demand outcome—the wage is, presumably, an accepted offer. As such, it is
unclear what the precise nature of this equation is. Presumably, it is a hash of the equations
of an elaborate structural equation system. '

4.7.2 CONFIDENCE INTERVALS FOR PARAMETERS

A confidence interval for 8; would be based on (4-13). We could say that
Prob(b; — Taj25p < Br < by + l‘a/zsbk) =1-q,

where 1 — « is the desired level of confidence and ¢, is the appropriate critical value
from the ¢ distribution with (n — K) degrees of freedom.

Example 4.4 Confidence Interval for the Income Elasticity
of Demand for Gasoline
Using the gasoline market data discussed in Example 2.3, we estimated following demand
equation using the 36 observations. Estimated standard errors, computed as shown above,
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are given in parentheses below the least squares estimates.
In(G/pop) = —7.737 — 0.05910In Pz + 1.3733In income

(0.6749)  (0.03248) (0.075628)
—0.126801n Py — 0.11871InP,c + €.
(0.12699) (0.081337)

To form a confidence interval for the income elasticity, we need the critical value from the
t distribution with n — K = 36 — 5 degrees of freedom. The 95 percent critical value is
2.040. Therefore, a 95 percent confidence interval for g, is 1.3733 + 2.040(0.075628), or
[1.2191, 1.5278].

We are interested in whether the demand for gasoline is income inelastic. The hypothesis
to be tested is that g, is less than 1. For a one-sided test, we adjust the critical region and
use the {, critical point from the distribution. Values of the sample estimate that are greatly
inconsistent with the hypothesis cast doubt upon it. Consider testing the hypothesis

Ho:ﬂ/ <1 versus H1:,3/21.
The appropriate test statistic is
_ 1.3733 -1

t= 0.075628

The critical value from the ¢ distribution with 31 degrees of freedom is 2.04, which is far less
than 4.936. We conclude that the data are not consistent with the hypothesis that the income
elasticity is less than 1, so we reject the hypothesis.

=4.936.

4.7.3 CONFIDENCE INTERVAL FOR A LINEAR COMBINATION
OF COEFFICIENTS: THE OAXACA DECOMPOSITION

With normally distributed disturbances, the least squares coefficient estimator, b, is
normally distributed with mean 8 and covariance matrix ¢2(X’X)~!. In Example 4.4,
we showed how to use this result to form a confidence interval for one of the elements
of B. By extending those results, we can show how to form a confidence interval for a
linear function of the parameters. Oaxaca’s (1973) decomposition provides a frequently
used application.

Let w denote a K x 1 vector of known constants. Then, the linear combination
¢ = whbis normally distributed with mean y = w8 and variance o2 = W[ 2(X'X) ! ]w,
which we estimate with 52 = w/[s2(X’X)~!]w. With these in hand, we can use the earlier
results to form a confidence interval for y:

Probc — typsc <y <c+lypsd]=1—a.

This general result can be used, for example, for the sum of the coefficients or for a
difference.

Consider, then, Oaxaca’s application. In a study of labor supply, separate wage
regressions are fit for samples of n,, men and ny women. The underlying regression
models are

) .
Inwage,,; =X, ;B +mi» i=1,...,0n
and

Inwage,, =x; Br+ep;, j=1,....n;.
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The regressor vectors include sociodemographic variables, such as age, and human cap-
ital variables, such as education and experience. We are interested in comparing these
two regressions, particularly to see if they suggest wage discrimination. Oaxaca sug-
gested a comparison of the regression functions. For any two vectors of characteristics,

E[Inwage, ;| — E[lnwage ;] =X, B, — X ;B¢
=X B — X By + X085 — X5 1By
=X}, (B — By) + Xmi — Xp;) By

The second term in this decomposition is identified with differences in human capital
that would explain wage differences naturally, assuming that labor markets respond
to these differences in ways that we would expect. The first term shows the differential
in log wages that is attributable to differences unexplainable by human capital; holding
these factors constant at x,, makes the first term attributable to other factors. Oaxaca
suggested that this decomposition be computed at the means of the two regressor vec-
tors, X,, and X ¢, and the least squares coefficient vectors, b, and by. If tlﬁgressions
contain constant terms, then this process will be equivalent to analyzing In y,, — In yy.

We are interested in forming a confidence interval for the first term, which will
require two applications of our result. We will treat the two vectors of sample means as
known vectors. Assuming that we have two independent sets of observations, our two
estimators, b,, and by, are independent with means 8,, and B f and covariance matrices
o2(X! X,,)"! and aj%(X’fX £)~L. The covariance matrix of the difference is the sum of
these two matrices. We are forming a confidence interval for X/, d where d = by, — by.
The estimated covariance matrix is

Est. Var[d] = s,zn(X;nX,,,)_1 + s%(X’fo)_l.

Now, we can apply the result above. We can also form a confidence interval for the
second term; just define w = X, — X and apply the earlier result to w'by.

4.7.4 TESTING THE SIGNIFICANCE OF THE REGRESSION

A question that is usually of interest is whether the regression equation as a whole is
significant. This test is a joint test of the hypotheses that all the coefficients except the
constant term are zero. If all the slopes are zero, then the multiple correlation coefficient
is zero as well, so we can base a test of this hypothesis on the value of R2. The central
result needed to carry out the test is the distribution of the statistic

R/(K-1)

T A-R/n-K)
If the hypothesis that 8, = 0 (the part of 8 not including the constant) is true and the
disturbances are normally distributed, then this statistic has an F distribution with K —~1
and n — K degrees of freedom.? Large values of F give evidence against the validity of
the hypothesis. Note that a large F is induced by a large value of RZ.

The logic of the test is that the F statistic is a measure of the loss of fit (namely, all
of R?) that results when we impose the restriction that all the slopes are zero. If F is
large, then the hypothesis is rejected.

F[K—-1,n—K] 4-15)

3The proof of the distributional result appears in Section 6.3.1. The F statistic given above is the special case
inwhichR = [0 | Ix_1].
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Example 4.5 F Test for the Earnings Equation
The F ratio for testing the hypothesis that the four slopes in the earnings equation are all
zero is

0.040995/4
(1~ 0.040995) /(428 — 5)

which is far larger than the 95 percent critical value of 2.37. We conclude that the data are
inconsistent with the hypothesis that all the slopes in the earnings equation are zero.

We might have expected the preceding result, given the substantial t ratios presented
earlier. But this case need not always be true. Examples can be constructed in which the
individual coefficients are statistically significant, while jointly they are not. This case can be
regarded as pathological, but the opposite one, in which none of the coefficients is signifi-
cantly different from zero while R? is highly significant, is relatively common. The problem is
that the interaction among the variables may serve to obscure their individual contribution
to the fit of the regression, whereas their joint effect may still be significant. We will return to
this point in Section 4.9.1 in our discussion of multicollinearity.

F[4,423] = =4.521,

4.7.5 MARGINAL DISTRIBUTIONS OF THE TEST STATISTICS

We now consider the relation between the sample test statistics and the data in X. First,
consider the conventional ¢ statistic in (4-14) for testing Hy : B = ﬂ,?,

(bx — BY)

20X X))

Conditional on X, if B, = B (i.e., under Hy), then ¢ | X has a ¢ distribution with (n — K)
degrees of freedom. What interests us, however, is the marginal, that is, the uncon-
ditional, distribution of . As we saw, b is only normally distributed conditionally on
X; the marginal distribution may not be normal because it depends on X (through
the conditional variance). Similarly, because of the presence of X, the denominator
of the ¢ statistic is not the square root of a chi-squared variable divided by its de-
grees of freedom, again, except conditional on this X. But, because the distributions
of {(bx — B)/[0>X'X)ee ]?} | X and [(n — K)s?/o?] | X are still independent N[0, 1]
and y’[n — K], respectively, which do not involve X, we have the surprising result that,
regardless of the distribution of X, or even of whether X is stochastic or nonstochastic,
the marginal distributions of ¢ is still 7, even though the marginal distribution of b, may
be nonnormal. This intriguing result follows because f(z | X) is not a function of X. The
same reasoning can be used to deduce that the usual F ratio used for testing linear
restrictions is valid whether X is stochastic or not. This result is very powerful. The
implication is that if the disturbances are normally distributed, then we may carry out
tests and construct confidence intervals for the parameters without making any changes
in our procedures, regardless of whether the regressors are stochastic, nonstochastic, or
some mix of the two.

(X =

4.8 FINITE-SAMPLE PROPERTIES
OF LEAST SQUARES

A summary of the results we have obtained for the least squares estimator appears
in Table 4.3. For constructing confidence intervals and testing hypotheses, we derived
some additional results that depended explicitly on the normality assumption. Only
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TABLE 4.3 F

General results:

FS1. E[b|X]= E[b] = B. Least squares is unbiased.

FS2. Var[b|X] = 0%(X'X)"}; Var[b] = 62 E[(X'X)"1].

FS3. Gauss—Markov theorem: The MVLUE of w'g is w'b.

FSd4. E[s*|X] = E[s’] =02

FS5. Covib,e|X] = E[(b - B)e' | X] = E[(X'X) X'ee’M|X] = 0 as X' (¢2DM = 0.
Results that follow from Assumption A6, normally distributed disturbances:

F86. b and e are statistically independent. It follows that b and s? are uncorrelated and
statistically independent.

FS7. The exact distribution of b | X, is N[, 02(X’X)"'].

FS8. (n— K)s?/o? ~ x*[n — K].s? has mean o2 and variance 20*/(n — K).

Test Statistics based on results FS6 through FS8:

FS9. t[n— K] = (b — Bo/[s*(X’X) ' ~ t[n — K] independently of X.

FS10. The test statistic for testing the null hypothesis that all slopes in the model are zero,
F[K—1,n—K]=[R/(K-1]/[(1- R?)/(n— K)] has an F distribution with K — 1 and n — K
degrees of freedom when the null hypothesis is true.

- FS7 depends on whether X is stochastic or not. If so, then the marginal distribution of
b depends on that of X. Note the distinction between the properties of b established
using A1l through A4 and the additional inference results obtained with the further
assumption of normality of the disturbances. The primary result in the first set is the
Gauss-Markov theorem, which holds regardless of the distribution of the disturbances.
The important additional results brought by the normality assumption are FS9 and FS10.

4.9 DATA PROBLEMS

In this section, we consider three practical problems that arise in the setting of regression
analysis, multicollinearity, missing observations and outliers.

4.9.1 MULTICOLLINEARITY

The Gauss-Markov theorem states that among all linear unbiased estimators, the least
squares estimator has the smallest variance. Although this result is useful, it does not
assure us that the least squares estimator has a small variance in any absolute sense.
Consider, for example, a model that contains two explanatory variables and a constant.
For either slope coefficient,

o? o?

(1—rh) Y — %02 (1 rty) S’
If the two variables are perfectly correlated, then the variance is infinite. The case of
an exact linear relationship among the regressors is a serious failure of the assumptions
of the model, not of the data. The more common case is one in which the variables
are highly, but not perfectly, correlated. In this instance, the regression model retains
all its assumed properties, although potentially severe statistical problems arise. The

Var[by] = k=1,2.  (4-16)
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problem faced by applied researchers when regressors are highly, although not perfectly,
correlated include the following symptoms:

e Small changes in the data produce wide swings in the parameter estimates.

e Coefficients may have very high standard errors and low significance levels even
though they are jointly significant and the R? for the regression is quite high.

o Coecfficients may have the “wrong” sign or implausible magnitudes.

For convenience, define the data matrix, X, to contain a constant and K — 1 other
variables measured in deviations from their means. Let x;, denote the kth variable, and
let X4 denote all the other variables (including the constant term). Then, in the inverse
matrix, (X'X) ™!, the kth diagonal element is

(KeMoxe) ™ = X% — XXty (Xl X)) ™ Xipoe] ™

-1

! ’ “1 ’
— e (12 ¥ (Xl X)Xl
= | XXk - X;< X2 (4_17)
_ 1
- (1- RSk’

where R? is the R? in the regression of x on all the other variables. In the multiple
regression model, the variance of the kth least squares coefficient estimator is o2 times
this ratio. It then follows that the more highly correlated a variable is with the other
variables in the model (collectively), the greater its variance will be. In the most extreme
case, in which x, can be written as a linear combination of the other variables so that
R,Z(' =1, the variance becomes infinite. The result

o

(1- RY) > (xix — %2

shows the three ingredients of the precision of the kth least squares coefficient estimator:

Var[b] =

(4-18)

e  Other things being equal, the greater the correlation of x; with the other
variables, the higher the variance will be, due to multicollinearity.

e  Other things being equal, the greater the variation in xy, the lower the variance
will be. This result is shown in Figure 4.2.

s Other things being equal, the better the overall fit of the regression, the lower the
variance will be. This result would follow from a lower value of o>. We have yet to
develop this implication, but it can be suggested by Figure 4.2 by imagining the
identical figure in the right panel but with all the points moved closer to the
regression line.

Since nonexperimental data will never be orthogonal (R =0), to some extent
multicollinearity will always be present. When is multicollinearity a problem? That is,
when are the variances of our estimates so adversely affected by this intercorrelation that
we should be “concerned?” Some computer packages report a variance inflation factor
(VIF), 1/(1 — R?), for each coefficient in a regression as a diagnostic statistic. As can
be seen, the VIF for a variable shows the increase in Var[by] that can be attributable to
the fact that this variable is not orthogonal to the other variables in the model. Another
measure that is specifically directed at X is the condition number of X'X, which is the
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TABLE 4. -ongley Results: Dependent Variable yment
1947-1961 Variance Inflation 1947-1962
Constant 1,459,415 1,169,087
Year —721.756 251.839 —576.464
GNP deflator —-181.123 75.6716 —19.7681
GNP 0.0910678 132.467 0.0643940
Armed Forces —0.0749370 1.55319 —0.0101453

square root ratio of the largest characteristic root of X'X (after scaling each column so
that it has unit length) to the smallest. Values in excess of 20 are suggested as indicative
of a problem [Belsley, Kuh, and Welsch (1980)]. (The condition number for the Longley
data of Example 4.6 is over 15,000!)

Example 4.6 Multicollinearity in the Longley Data

The data in Table F4.2 were assembled by J. Longley (1967) for the purpose of assessing the
accuracy of least squares computations by computer programs. (These data are still widely
used for that purpose.) The Longley data are notorious for severe multicollinearity. Note, for
example, the last year of the data set. The last observation does not appear to be unusual.
But, the results in Table 4.4 show the dramatic effect of dropping this single observation from
a regression of employment on a constant and the other variables. The last coefficient rises
by 600 percent, and the third rises by 800 percent.

Several strategies have been proposed for finding and coping with multicollinear-
ity.* Under the view that a multicollinearity “problem” arises because of a shortage of
information, one suggestion is to obtain more data. One might argue that if analysts had
such additional information available at the outset, they ought to have used it before
reaching this juncture. More information need not mean more observations, however.
The obvious practical remedy (and surely the most frequently used) is to drop variables
suspected of causing the problem from the regression—that is, to impose on the regres-
sion an assumption, possibly erroneous, that the “problem” variable does not appear in
the model. In doing so, one encounters the problems of specification that we will discuss
in Section 8.2. If the variable that is dropped actually belongs in the model (in the sense
that its coefficient, B, is not zero), then estimates of the remaining coefficients will be
biased, possibly severely so. On the other hand, overfitting—that is, trying to estimate a
model that is too large—is a common error, and dropping variables from an excessively
specified model might have some virtue. Several other practical approaches have also

- been suggested. The ridge regression estimator is b, = [X'X + rD]~' X'y, where D is a
diagonal matrix. This biased estimator has a covariance matrix unambiguously smaller
than that of b. The tradeoff of some bias for smaller variance may be worth making
(see Judge et al., 1985), but, nonetheless, economists are generally averse to biased
estimators, so this approach has seen little practical use. Another approach sometimes
used [see, e.g., Gurmu, Rilstone, and Stern (1999)] is to use a small number, say L, of
principal components constructed from the K original variables. [See Johnson and
Wichern (1999).] The problem here is that if the original model in the formy = X8 + ¢
were correct, then it is unclear what one is estimating when one regresses y on some

#See Hill and Adkins (2001) for a description of the standard set of tools for diagnosing collinearity.
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small set of linear combinations of the columns of X. Algebraically, it is simple; at least
for the principal components case, in which we regress y on Z =XC/, to obtain d, it
follows that F [d] = § = C,C} B. In an economic context, if 8 has an interpretation, then
it is unlikely that § will. (How do we interpret the price elasticity plus minus twice the
income elasticity?)

Using diagnostic tools to detect multicollinearity could be viewed as an attempt
to distinguish a bad model from bad data. But, in fact, the problem only stems from
a prior opinion with which the data seem to be in conflict. A finding that suggests
multicollinearity is adversely affecting the estimates seems to suggest that but for this
effect, all the coefficients would be statistically significant and of the right sign. Of course,
this situation need not be the case. If the data suggest that a variable is unimportant in
a model, then, the theory notwithstanding, the researcher ultimately has to decide how
strong the commitment is to that theory. Suggested “remedies” for multicollinearity
might well amount to attempts to force the theory on the data.

4.9.2 MISSING OBSERVATIONS

It is fairly common for a data set to have gaps, for a variety of reasons. Perhaps the
most common occurrence of this problem is in survey data, in which it often happens
that respondents simply fail to answer the questions. In a time series, the data may
be missing because they do not exist at the frequency we wish to observe them; for
example, the model may specify monthly relationships, but some variables are observed
only quarterly.

There are two possible cases to consider, depending on why the data are missing.
One is that the data are simply unavailable, for reasons unknown to the analyst and
unrelated to the completeness of the other observations in the sample. If this is the case,
then the complete observations in the sample constitute a usable data set, and the only
issue is what possibly helpful information could be salvaged from the incomplete obser-
vations. Griliches (1986) calls this the ignorable case in that, for purposes of estimation,
if we are not concerned with efficiency, then we may simply ignore the problem. A
second case, which has attracted a great deal of attention in the econometrics literature,
is that in which the gaps in the data set are not benign but are systematically related
to the phenomenon being modeled. This case happens most often in surveys when the
data are “self-selected” or “self-reported.”® For example, if a survey were designed to
study expenditure patterns and if high-income individuals tended to withhold infor-
mation about their income, then the gaps in the data set would represent more than
just missing information. In this case, the complete observations would be qualitatively
different. We treat this second case in Chapter 22, so we shall defer our discussion until
later.

In general, not much is known about the properties of estimators based on using
predicted values to fill missing values of y. Those results we do have are largely from
simulation studies based on a particular data set or pattern of missing data. The results
of these Monte Carlo studies are usually difficult to generalize. The overall conclusion

>The vast surveys of Americans’ opinions about sex by Ann Landers (1984, passim) and Shere Hite (1987)
constitute two celebrated studies that were surely tainted by a heavy dose of self-selection bias. The latter was
pilloried in numerous publications for purporting to represent the population at large instead of the opinions
of those strongly enough inclined to respond to the survey. The first was presented with much greater modesty.
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seems to be that in a single-equation regression context, filling in missing values of y
leads to biases in the estimator which are difficult to quantify.

For the case of missing data in the regressors, it helps to consider the simple regres-
sion and multiple regression cases separately. In the first case, X has two columns the
column of 1s for the constant and a column with some blanks where the missing data
would be if we had them. Several schemes have been suggested for filling the blanks.
The zero-order method of replacing each missing x with ¥ results in no changes and is
equivalent to dropping the incomplete data. (See Exercise 7 in Chapter 3.) However,
the R? will be lower. An alternative, modified zero-order regression is to fill the sec-
ond column of X with zeros and add a variable that takes the value one for missing
observations and zero for complete ones.® We leave it as an exercise to show that this
is algebraically identical to simply filling the gaps with ¥ Last, there is the possibility of
computing fitted values for the missing x’s by a regression of x on y in the complete
data. The sampling properties of the resulting estimator are largely unknown, but what
evidence there is suggests that this is not a beneficial way to proceed.”

4.9.3 REGRESSION DIAGNOSTICS AND
INFLUENTIAL DATA POINTS

Even in the absence of multicollinearity or other data problems, it is worthwhile to
examine one’s data closely for two reasons. First, the identification of outliers in the
data is useful, particularly in relatively small cross sections in which the identity and
perhaps even the ultimate source of the data point may be known. Second, it may be
possible to ascertain which, if any, particular observations are especially influential in
the results obtained. As such, the identification of these data points may call for further
study. It is worth emphasizing, though, that there is a certain danger in singling out
particular observations for scrutiny or even elimination from the sample on the basis of
statistical results that are based on those data. At the extreme, this step may invalidate
the usual inference procedures.
Of particular importance in this analysis is the projection matrix or hat matrix:

P = XX'X)"'X'". (4-19)
This matrix appeared earlier as the matrix that projects any n x 1 vector into the column
space of X. For any vector y, Py is the set of fitted values in the least squares regression
of y on X. The least squares residuals are
e=My=Me=1A-P)e,
so the covariance matrix for the least squares residual vector is
\ Elee'] = o’M = o2(I1 - P).

To identify which residuals are significantly large, we first standardize them by dividing ‘

%See Maddala (1977a, p. 202).

TAfifi and Elashoff (1966, 1967) and Haitovsky (1968). Griliches (1986) considers a number of other
possibilities. : :
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Standardized Residuals
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by the appropriate standard deviations. Thus, we would use
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where ¢; is the ith least squares residual, s = e’e/(n— K), p;; is the ith diagonal element
of P and my;; is the ith diagonal element of M. It is easy to show (we leave it as an exercise)
that e; /m;; = y; — x;b(i) where b(i) is the least squares slope vector computed with-
out this observation, so the standardization is a natural way to investigate whether the
particular observation differs substantially from what should be expected given the
model specification. Dividing by s2, or better, s(i)° scales the observations so that
the value 2.0 [suggested by Belsley, et al. (1980)] provides an appropriate benchmark.
Figure 4.3 illustrates for the Longley data of the previous example. Apparently, 1956
was an unusual year according to this “model.” (What to do with outliers is a question.
Discarding an observation in the middle of a time series is probably a bad idea, though
we may hope to learn something about the data in this way. For a cross section, one may
be able to single out observations that do not conform to the model with this technique.)

4.10 SUMMARY AND CONCLUSIONS

This chapter has examined a set of properties of the least squares estimator that will
apply in all samples, including unbiasedness and efficiency among unbiased estimators.
The assumption of normality of the disturbances produces the distributions of some
useful test statistics which are useful for a statistical assessment of the validity of the
regression model. The finite sample results obtained in this chapter are listed in Table 4.3.
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We also considered some practical problems that arise when data are less than perfect
for the estimation and analysis of the regression model, including multicollinearity and
missing observations.

The formal assumptions of the classical model are pivotal in the results of this
chapter. All of them are likely to be violated in more general settings than the one
considered here. For example, in most cases examined later in the book, the estimator
has a possible bias, but that bias diminishes with increasing sample sizes. Also, we are
going to be interested in hypothesis tests of the type considered here, but at the same
time, the assumption of normality is narrow, so it will be necessary to extend the model
to allow nonnormal disturbances. These and other ‘large sample’ extensions of the linear
model will be considered in Chapter 5.

Key Terms and Concepts

¢ Assumptions ¢ Minimum variance linear ¢ Semiparametric
» Condition number unbiased estimator e Standard Error
» Confidence interval ¢ Missing observations ¢ Standard error of the
¢ Estimator ¢ Multicollinearity regression
* Gauss-Markov Theorem e Qaxaca’s decomposition o Statistical properties
¢ Hat matrix e Optimal linear predictor o Stochastic regressors
e [gnorable case ¢ Orthogonal random o t ratio
¢ Linear estimator variables
e Linear unbiased estimator e Principal components
* Mean squared error * Projection matrix
¢ Minimum mean squared « Sampling distribution
error  Sampling variance

Exercises

1. Suppose that you have two independent unbiased estimators of the same parameter
0, say 6, and @5, with different variances v; and v,. What linear combination f =
€101 + ¢26, is the minimum variance unbiased estimator of 67

2. Consider the simple regression y; = Bx; + & where E e |x] = 0and E[¢? | x] = o?

a.

What is the minimum mean squared error linear estimator of ? [Hint: Let the
estimator be [ = ¢’y]. Choose ¢ to minimize Var[8]+ [E(B — B)]*. The answer
is a function of the unknown parameters.]

. For the estimator in part a, show that ratio of the mean squared error of B to

that of the ordinary least squares estimator b is

MSE [] = i where 12 = &

MSE[b] (1412’ T [e2/xx]’

Note that 7 is the square of the population analog to the “f ratio” for testing
the hypothesis that § = 0, which is given in (4-14). How do you interpret the
behavior of this ratio as T — 0o0?

3. Suppose that the classical regression model applies but that the true value of the
constant is zero. Compare the variance of the least squares slope estimator com-
puted without a constant term with that of the estimator computed with an unnec-
essary constant term.
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4.

10.

11.

Suppose that the regression model is y; = @ + Bx; + &;, where the disturbances &;
have f(¢;) = (1/1) exp(—As;i), & > 0. This model is rather peculiar in that all the
disturbances are assumed to be positive. Note that the disturbances have E[¢; | x;] =
A and Var[e; | x;] = A2. Show that the least squares slope is unbiased but that the
intercept is biased.

Prove that the least squares intercept estimator in the classical regression model is
the minimum variance linear unbiased estimator.

Ass a profit maximizing monopolist, you face the demand curve Q = a+ P +¢.In
the past, you have set the following prices and sold the accompanying quantities:

QO[3 3 7 6 10 15 16 13 9 15 9 15 12 18 21
P[181617121515413116810777

Suppose that your marginal cost is 10. Based on the least squares regression, com-
pute a 95 percent confidence interval for the expected value of the profit maximizing
output.

The following sample moments for x = [1, x1, x,, x3] were computed from 100 ob-
servations produced using a random number generator:

100 123 96 109 460
123 252 125 189 o, _ |810] .,
XX=1"96 15 167 146/ XY= |e15|" Y¥=3924

109 189 146 168 712

The true model underlying these datais y = x; + x» + x3 + &.

a. Compute the simple correlations among the regressors.

b. Compute the ordinary least squares coefficients in the regression of y on a con-
stant x1, x;, and x3.

¢. Compute the ordinary least squares coefficients in the regression of y on a con-
stant x; and x;, on a constant x; and x3, and on a constant x, and x;.

d. Compute the variance inflation factor associated with each variable.

e. The regressors are obviously collinear. Which is the problem variable?

Consider the multiple regression of y on K variables X and an additional variable z.

Prove that under the assumptions A1 through A6 of the classical regression model,

the true variance of the least squares estimator of the slopes on X is larger when z

is included in the regression than when it is not. Does the same hold for the sample

estimate of this covariance matrix? Why or why not? Assume that X and z are

nonstochastic and that the coefficient on z is nonzero.

For the classical normal regression model y = Xg + & with no constant term and

K regressors, assuming that the true value of B is zero, what is the exact expected

value of F[K,n - K] = (R*/K)/[(1 — R)/(n— K)]?

Prove that E[b'b] = 8’8 + o Y&, (1/Ax) where b is the ordinary least squares

estimator and Ay is a characteristic root of X’X.

Data on U.S. gasoline consumption for the years 1960 to 1995 are given in

Table F2.2.

a. Compute the multiple regression of per capita consumption of gasoline, G/pop,
on all the other explanatory variables, including the time trend, and report all
results. Do the signs of the estimates agree with your expectations?
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b.

Test the hypothesis that at least in regard to demand for gasoline, consumers do
not differentiate between changes in the prices of new and used cars.

. Estimate the own price elasticity of demand, the income elasticity, and the cross-

price elasticity with respect to changes in the price of public transportation.

. Reestimate the regression in logarithms so that the coefficients are direct esti-

mates of the elasticities. (Do not use the log of the time trend.) How do your
estimates compare with the results in the previous question? Which specification
do you prefer?

. Notice that the price indices for the automobile market are normalized to 1967,

whereas the aggregate price indices are anchored at 1982. Does this discrepancy
affect the results? How? If you were to renormalize the indices so that they were
all 1.000 in 1982, then how would your results change?
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LARGE-SAMPLE PROPERTIES
OF THE LEAST SQUARES
AND INSTRUMENTAL
VARIABLES ESTIMATORS

INTRODUCTION

The discussion thus far has concerned finite-sample properties of the least squares
estimator. We derived its exact mean and variance and the precise distribution of the
estimator and several test statistics under the assumptions of normally distributed dis-
turbances and independent observations. These results are independent of the sample
size. But the classical regression model with normally distributed disturbances and inde-
pendent observations is a special case that does not include many of the most common
applications, such as panel data and most time series models. This chapter will generalize
the classical regression model by relaxing these two important assumptions.!

The linear model is one of relatively few settings in which any definite statements
can be made about the exact finite sample properties of any estimator. In most cases,
the only known properties of the estimators are those that apply to large samples.
We can only approximate finite-sample behavior by using what we know about large-
sample properties. This chapter will examine the asymptotic properties of the parameter
estimators in the classical regression model. In addition to the least squares estimator,
this chapter will also introduce an alternative technique, the method of instrumental
variables. In this case, only the large sample properties are known.

5.2 ASYMPTOTIC PROPERTIES

OF THE LEAST SQUARES ESTIMATOR

Using only assumptions Al through A4 of the classical model (as listed in Table 4.1),
we have established that the least squares estimators of the unknown parameters, 8 and
o2, have the exact, finite-sample properties listed in Table 4.3. For this basic model, it
is straightforward to derive the large-sample properties of the least squares estimator.,
The normality assumption, A6, becomes inessential at this point, and will be discarded
save for brief discussions of maximum likelihood estimation in Chapters 10 and 17. This
section will consider various forms of Assumption A5, the data generating mechanism.

"Most of this discussion will use our earlier results on asymptotic distributions. It may be helpful to review
Appendix D before proceeding.

65
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5.2.1 CONSISTENCY OF THE LEAST SQUARES ESTIMATOR OF 8

To begin, we leave the data generating mechanism for X unspecified—X may be any
mixture of constants and random variables generated independently of the process
that generates e. We do make two crucial assumptions. The first is a modification of
Assumption A5 in Table 4.1;

ASa. (x;,epi=1,...,nis asequence of independent observations.

The second concerns the behavior of the data in large samples;

I4

plim

n—oQC

= Q, a positive definite matrix. (5-1)

[We will return to (5-1) shortly.] The least squares estimator may be written
| XX\ X |
b=ﬁ+( > ( s). (5-2)
n n

XI
plimb = 8 + Q—lplim< e)
n

If Q! exists, then

because the inverse is a continuous function of the original matrix. (We have invoked
Theorem D.14.) We require the probability limit of the last term. Let

1., 1< 1< _
ZX€=;§XI‘EZ‘=;§W[=W. (5'3)
Then
plimb = 8 + Q™! plim w.

From the exogeneity Assumption A3, we have E[w;] = E[E[w; | x;]] = Ex[x; E[ei | x:]]
=9, so the exact expectation is £[W] = 0. For any element in x; that is nonstochastic,
the zero expectations follow from the marginal distribution of ¢;. We now consider the
variance. By (B-70), Var[w] = E[Var[w|X]] + Var[ E[w| X]]. The second term is zero
because E[g; | x;] = 0. To obtain the first, we use E[ee’ | X] = oI, so

Var[w|X] = E[wwW |X] = %X’E[es’lX]X% = (‘7—2) (X'X)

n n
Var[w] = <%2) E(X;X).

The variance will collapse to zero if the expectation in parentheses is (or converges to)
a constant matrix, so that the leading scalar will dominate the product as » increases.
Assumption (5-1) should be sufficient. (Theoretically, the expectation could diverge
while the probability limit does not, but this case would not be relevant for practical
purposes.) It then follows that ‘

Therefore,

lim Var[w]=0-Q=0.

n—->oo
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Since the mean of w is identically zero and its variance converges to zero, W converges
in mean square to zero, so plim w = 0. Therefore,

’

X
SO
plimb=8+Q1.0=8. (5-5)

This result establishes that under Assumptions A1-A4 and the additional assumption
(5-1), b is a consistent estimator of 8 in the classical regression model.

Time-series settings that involve time trends, polynomial time series, and trending
variables often pose cases in which the preceding assumptions are too restrictive. A
somewhat weaker set of assumptions about X that is broad enough to include most of
these is the Grenander conditions listed in Table 5.1.2 The conditions ensure that the
data matrix is “well behaved” in large samples. The assumptions are very weak and is
likely to be satisfied by almost any data set encountered in practice.’

5.2.2 ASYMPTOTIC NORMALITY OF THE LEAST SQUARES
ESTIMATOR

To derive the asymptotic distribution of the least squares estimator, we shall use the
results of Section D.3. We will make use of some basic central limit theorems, so in
addition to Assumption A3 (uncorrelatedness), we will assume that the observations
are independent. It follows from (5-2) that

X'X\1/ 1 '
b-p)= — |X'e. 5-6
do-p= (T (L) s
Since the inverse matrix is a continuous function of the original matrix, plim(X'X/n) ™! =

QL. Therefore, if the limiting distribution of the random vector in (5-6) exists, then that
limiting distribution is the same as that of

[ , (X’X)‘1 1
plim
n

(ﬁx'e;q-l(%)x'e. o o

Thus, we must establish the limiting distribution of

1
where E[w] = 0. [See (5-3).] We can use the multivariate Lindberg—Feller version of
the central limit theorem (D.19.A) to obtain the limiting distribution of /nw.* Using
that formulation, w is the average of n independent random vectors w; = x;¢;, with
means 0 and variances

Var[x;s;] = 02 E[x;x/] = 0°Q;. (5-9)

2Judge et al. (1985, p. 162).
3White (2001) continues this line of analysis.
4Note that the Lindberg-Levy variant does not apply because Var[w; ] is not necessarily constant.
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Grenander Conditions for Well Behaved Data

G1. For each column of X, xy, if d2, = X/x,, then lim,_, , d%, = +oc. Hence, x, does not
degenerate to a sequence of zeros. Sums of squares will continue to grow as the sample size
increases. No variable will degenerate to a sequence of zeros.

G2. Lim, ,ox3/d3 =Oforalli =1,...,n. This condition implies that no single observation
will ever dominate x)x,, and as n — o0, individual observations will become less important.
G3. Let R, be the sample correlation matrix of the columns of X, excluding the constant term
if there is one. Then lim, ., R, = C, a positive definite matrix. This condition implies that the
full rank condition will always be met. We have already assumed that X has full rank in a finite
sample, so this assumption ensures that the condition will never be violated.

The variance of /nw is ‘
0’Qu =0 (%)[Ql + Q2+ -+ Qu). (5-10)

As long as the sum is not dominated by any particular term and the regressors are well
behaved, which in this case means that (5-1) holds,

lim 02Q, = ¢2Q. | (5-11)

n—oo

Therefore, we may apply the Lindberg-Feller central limit theorem to the vector /n w,
as we did in Section D.3 for the univariate case /nx. We now have the elements we
need for a formal result. If [x;¢;],i = 1, ..., n are independent vectors distributed with
mean 0 and variance 02Q; < oo, and if (5-1) holds, then

(%)X'e 2, N[0, 5%Q]. , 512
It then follows that '
Q! (%)X's < NQ'0,Q'(c’Q)Q7']. : (5-13)
Combining terms,
Vrb - ) > N[0, 0%Q 1], (5-14)

Using the technique of Section D.3, we obtain the asymptotic distribution of b:

THEOREM 5.1 Asymptotic Distribution of b with Independent
Observations

If {e;} are independently distributed with mean zero and finite variance o2 and x;

is such that the Grenander conditions are met, then

a 02
b~N [ﬁ, 7Q‘1]. (5-15)

In practice, it is necessary to estimate (1/n)Q ! with (X’X)~! and ¢ with e’e/(n — K).
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If e is normally distributed, then Result FS7 in (Table 4.3, Section 4.8) holds in every
sample, so it holds asymptotically as well. The important implication of this derivation
is that if the regressors are well behaved and observations are independent, then the
asymptotic normality of the least squares estimator does not depend on normality of
the disturbances; it is a consequence of the central limit theorem. We will consider other
more general cases in the sections to follow.

5.2.3 CONSISTENCY OF s2 AND THE ESTIMATOR OF Asy. Var[b]

To complete the derivation of the asymptotic properties of b, we will require an estimator
of Asy. Var[b] = (¢?/n)Q 1.5 With (5-1), it is sufficient to restrict attention to s2, so the
purpose here is to assess the consistency of s as an estimator of o. Expanding

1
s2 = &'Me

produces

1 n |[é&e X\ /X' X\ /Xe
2 _ o o ryvy =y’ — =& o .
s_n_K[ee e XX'X) ' X'e] n—k[n <n><n > (n)]

The leading constant clearly converges to 1. We can apply (5-1), (5-4) (twice), and the
product rule for probability limits (Theorem D.14) to assert that the second term in the
brackets converges to 0. That leaves

This is a narrow case in which the random variables &7 are independent with the same
finite mean o2, so not much is required to get the mean to converge almost surely to
0% = E[¢?]. By the Markov Theorem (D.8), what is needed is for E[|&? |'+?] to be finite,
so the minimal assumption thus far is that ¢; have finite moments up to slightly greater
than 2. Indeed, if we further assume that every ¢; has the same distribution, then by
the Khinchine Theorem (D.5) or the Corollary to DS, finite moments (of ;) up to 2 is
sufficient. Mean square convergence would require E[¢}] = ¢. < oo. Then the terms
in the sum are independent, with mean o2 and variance ¢, — o*. So, under fairly weak
condition, the first term in brackets converges in probability to ¢, which gives our
result,

plim 5% = o2,
and, by the product rule,
plim s>(X'X/n)~! = 62Q71.
The appropriate estimator of the asymptotic covariance matrix of b is

Est.Asy. Var[b] = s*(X'X)".

’See McCallum (1973) for some useful commentary on deriving the asymptotic covariance matrix of the least
squares estimator. . .
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5.2.4 ASYMPTOTIC DISTRIBUTION OF A FUNCTION OF b:
THE DELTA METHOD

We can extend Theorem D.22 to functions of the least squares estimator. Let f(b) be a
set of J continuous, linear or nonlinear and continuously differentiable functions of the
least squares estimator, and let
of(b)
Ch)=—-,
(b ab’

where Cis the J x K matrix whose jth row is the vector of derivatives of the jth function
with respect to b’. By the Slutsky Theorem (D.12),

plim £(b) = £(8) -

and
. of(B)
lim Cb) = —- =T.
plim C(b) of
Using our usual linear Taylor series approach, we expand this set of functions in the
approximation

f(b) =f£(B) + T x (b — B) + higher-order terms.

The higher-order terms become negligible in large samples if plim b = B. Then, the
asymptotic distribution of the function on the left-hand side is the same as that on
the right. Thus, the mean of the asymptotic distribution is plim f(b) = f(8), and the
asymptotic covariance matrix is {T[Asy. Var(b — 8)]I"” }, which gives us the following
theorem:

THEOREM 5.2 Asymptotic Distribution of a Function of b
If 1(b) is a set of continuous and continuously differentiable functions of b
such that T = 3f(B)/8p’ and if Theorem 5.1 holds, then

2
fb) ~ N [f(ﬁ), r <%Q‘l> r’] . (5-16)

In practice, the estimator of the asymptotic covariance matrix would be

Est.Asy. Var[f(b)] = C[s*(X'X)"]C".

If any of the functions are nonlinear, then the property of unbiasedness that holds
for b may not carry over to f(b). Nonetheless, it follows from (5-4) that f(b) is a consistent
estimator of f(8), and the asymptotic covariance matrix is readily available.

5.2.5 ASYMPTOTIC EFFICIENCY

We have not established any large-sample counterpart to the Gauss-Markov theorem.
That is, it remains to establish whether the large-sample properties of the least squares
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estimator are optimal by any measure. The Gauss-Markov Theorem establishes finite
sample conditions under which least squares is optimal. The requirements that the
estimator be linear and unbiased limit the theorem’s generality, however. One of the
main purposes of the analysis in this chapter is to broaden the class of estimators in
the classical model to those which might be biased, but which are consistent. Ultimately,
we shall also be interested in nonlinear estimators. These cases extend beyond the reach
of the Gauss Markov Theorem. To make any progress in this direction, we will require
an alternative estimation criterion.

DEFINITION 5.1 Asymptotic Efficiency
An estimator is asymptotically efficient if it is consistent, asymptotically normally

distributed, and has an asymptotic covariance matrix that is not larger than the
asymptotic covariance matrix of any other consistent, asymptotically normally
distributed estimator.

In Chapter 17, we will show that if the disturbances are normally distributed, then
the least squares estimator is also the maximum likelihood estimator. Maximum likeli-
hood estimators are asymptotically efficient among consistent and asymptotically nor-
mally distributed estimators. This gives us a partial result, albeit a somewhat narrow one
since to claim it, we must assume normally distributed disturbances. If some other distri-
bution is specified for e and it emerges that b is not the maximum likelihood estimator,
then least squares may not be efficient.

Example 5.1 The Gamma Regression Model
Greene (1980a) considers estimation in a regression model with an asymmetrically distributed
disturbance,

y=(a—ovVP)+XB—(e~0vP) =a*+XB +¢,
where ¢ has the gamma distribution in Section B.4.5 [see (B-39)] and o = +/P/A is the
standard deviation of the disturbance. In this model, the covariance matrix of the least squares
estimator of the slope coefficients (not including the constant term) is,

Asy.Varb | X] = o2(X'M°X) ",
whereas for the maximum likelihood estimator (which is not the least squares estimator),
Asy.Var[B,, ] ~ [1 — (2/P)Jo¥ (X M°X)~"

But for the asymmetry parameter, this result would be the same as for the least squares

estimator. We conclude that the estimator that accounts for the asymmetric disturbance
distribution is more efficient asymptotically.

6The Matrix M® produces data in the form of deviations from sample means. (See Section A 2.8.) [n Greene’s
model, P must be greater than 2.
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5.3 MORE GENERAL CASES

The asymptotic properties of the estimators in the classical regression model were
established in Section 5.2 under the following assumptions:

Al. Linearity: y; = x;18) + xi282 + - - + xix Bx + €.

A2, Full rank: The n x K sample data matrix, X has full column rank.

A3. Exogeneity of the independent variables: E [s; |x;1, x5, ..., xjx] =0,
i,j=1,...,n

Ad. Homoscedasticity and nonautocorrelation.

AS. Data generating mechanism-independent observations.

The following are the crucial results needed: For consistency of b, we need (5-1) and
(5_4)7

plim(1/7)X’X = plim Q, = Q.  a positive definite matrix,
plim(1/n)X'e = plim w, = E[w,] = 0.

(For consistency of s?, we added a fairly weak assumption about the moments of the
disturbances.) To establish asymptotic normality, we will require consistency and (5-12)
which is

Vraw, —4 N[0, 02Q].

With these in place, the desired characteristics are then established by the methods of
Section 5.2. To analyze other cases, we can merely focus on these three results. It is not
necessary to reestablish the consistency or asymptotic normality themselves, since they
follow as a consequence.

5.3.1 HETEROGENEITY IN THE DISTRIBUTIONS OF X;

Exceptions to the assumptions made above are likely to arise in two settings. In a panel
data set, the sample will consist of multiple observations on each of many observational
units. For example, a study might consist of a set of observations made at different
points in time on a large number of families. In this case, the xs will surely be correlated
across observations, at least within observational units. They might even be the same
for all the observations on a single family. They are also likely to be a mixture of random
variables, such as family income, and nonstochastic regressors, such as a fixed “family
effect” represented by a dummy variable. The second case would be a time-series model
in which lagged values of the dependent variable appear on the right-hand side of the
model.

The panel data set could be treated as follows. Assume for the moment that the
data consist of a fixed number of observations, say T, on a set of N families, so that the
total number of rows in X is n = NT. The matrix

1 n
=;§Qi
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in which # is all the observations in the sample, could be viewed as

W=131 T Q,A_izN:Q.
ﬂ'—Nl T l_]—Nl:1 1y

observations
for family i

where Q; = average Q;; for family i. We might then view the set of observations on the
ith unit as if they were a single observation and apply our convergence arguments to the
number of families increasing without bound. The point is that the conditions that are
needed to establish convergence will apply with respect to the number of observational
units. The number of observations taken for each observation unit might be fixed and
could be quite small.

5.3.2 DEPENDENT OBSERVATIONS

The second difficult case arises when there are lagged dependent variables among the
variables on the right-hand side or, more generally, in time series settings in which the
observations are no longer independent or even uncorrelated. Suppose that the model
may be written

V=20 +yiyi1+-+VpVi—p+ & (5-17)

(Since this model is a time-series setting, we use ¢ instead of { to index the observations.)
We continue to assume that the disturbances are uncorrelated across observations.
Since y,_; is dependent on y,_, and so on, it is clear that although the disturbances are
uncorrelated across observations, the regressor vectors, including the lagged ys, surely
are not. Also, although Cov[x,, &] = 0ifs > z(x, =z, ¥ 1, y,_p]), Cov[x,, &] #0
if s <t. Every observation y, is determined by the entire history of the disturbances.
Therefore, we have lost the crucial assumption E[e | X] = 0; E|e, | future xs] is not
equal to 0. The conditions needed for the finite-sample results we had earlier no longer
hold. Without Assumption A3, E [e | X] = 0, our earlier proof of unbiasedness dissolves,
and without unbiasedness, the Gauss-Markov theorem no longer applies. We are left
with only asymptotic results for this case.

This case is considerably more general than the ones we have considered thus far.
The theorems we invoked previously do not apply when the observations in the sums are
correlated. To establish counterparts to the limiting normal distribution of (1//n)X’e
and convergence of (1/n)X'X to a finite positive definite matrix, it is necessary to
make additional assumptions about the regressors. For the disturbances, we replace
Assumption A3 following.

AD3. E[e|x%-5]=0, foralls>0.

This assumption states that the disturbance in the period “¢” is an innovation; it is
new information that enters the process. Thus, it is not correlated with any of the
history. It is not uncorrelated with future data, however, since &, will be a part of x,,.
Assumptions A1, A2, and A4 are retained (at least for the present). We will also replace
Assumption AS and result (5-1) with two assumptions about the right-hand variables.
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First,

1
-5

T
> xx_, =Qs), afinite matrix,s > 0, (5-18)
t=s+1

plim

and Q(0) is nonsingular if 7 > K. [Note that Q = Q(0).] This matrix is the sums of
cross products of the elements of x, with lagged values of x,. Second, we assume that
the roots of the polynomial

l—yiz=pzt = —ypf =0 (5-19)

are all outside the unit circle. (See Section 20.2 for further details.) Heuristically, these
assumptions imply that the dependence between values of the xs at different points in
time varies only with how far apart in time they are, not specifically with the points in
time at which observations are made, and that the correlation between observations
made at different points in time fades sufficiently rapidly that sample moments such
as Q(s) above will converge in probability to a population counterpart.” Formally, we
obtain these results with

ADS. The series on X, is stationary and ergodic.

This assumption also implies that Q(s) becomes a matrix of zeros as s (the separation
in time) becomes large. These conditions are sufficient to produce (1/7)X’e — 0 and
the consistency of b. Further results are needed to establish the asymptotic normality
of the estimator, however.?

In sum, the important properties of consistency and asymptotic normality of the
least squares estimator are preserved under the different assumptions of stochastic
regressors, provided that additional assumptions are made. In most cases, these as-
sumptions are quite benign, so we conclude that the two asymptotic properties of least
squares considered here, consistency and asymptotic normality, are quite robust to dif-
ferent specifications of the regressors.

y

5.4 INSTRUMENTAL VARIABLE AND TWO STAGE
LEAST SQUARES ESTIMATION

The assumption that x; and ¢; are uncorrelated has been crucial in the development thus
far. But, there are any number of applications in economics in which this assumption is
untenable. Examples include models that contain variables that are measured with error
and most dynamic models involving expectations. Without this assumption, none of the

7We will examine some cases in later chapters in which this does not occur. To consider a simple example,
suppose that x contains a constant. Then the assumption requires sample means to converge to popula-
tion garameters. Suppose that all observations are correlated. Then the variance of ¥ is Var[(1/T)Z.x] =
1/ T%) £, Z;Cov|xs, x;]. Since none of the T2 terms is assumed to be zero, there is no assurance that the
double sum converges to zero as T — oo. But if the correlations diminish sufficiently with distance in time,
then the sum may converge to zero.

8These appear in Mann and Wald (1943), Billingsley (1979) and Dhrymes (1998).
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proofs of consistency given above will hold up, so least squares loses its attractiveness
as an estimator. There is an alternative method of estimation called the method of
instrumental variables (IV). The least squares estimator is a special case, but the IV
method is far more general. The method of instrumental variables is developed around
the following general extension of the estimation strategy in the classical regression
model: Suppose that in the classical model y; = x;B + &;, the K variables x; may be
correlated with ;. Suppose as well that there exists a set of L variables z;, where L is at
least as large as K, such that z; is correlated with x; but not with ¢;. We cannot estimate
B consistently by using the familiar least squares estimator. But we can construct a
consistent estimator of 8 by using the assumed relationships among z;, x;, and ¢;.

Example 5.2 Models in Which Least Squares is Inconsistent
The following models will appear at various points in this book. In general, least squares will
not be a suitable estimator.

Dynamic Panel Data Model In Example 13.6 and Section 18.5, we will examine a model! for
municipal expenditure of the form S;; = 7(Sit_1,...) + &;. The disturbances are assumed to
be freely correlated across periods, so both Si—1 and ¢;; are correlated with & ,_4. It follows
that they are correlated with each other, which means that this model, even with a linear
specification, does not satisfy the assumptions of the classical model. The regressors and
disturbances are correlated.

Dynamic Regression In Chapters 19 and 20, we will examine a variety of time series models
which are of the form y, = f(y;_1, ...) + & in which & is (auto-) correlated with its past values.
This case is essentially the same as the one we just considered. Since the disturbances
are autocorrelated, it follows that the dynamic regression implies correlation between the
disturbance and a right hand side variable. Once again, least squares will be inconsistent.

Consumption Function We (and many other authors) have used a macroeconomic version
of the consumption function at various points to illustrate least squares estimation of the
classical regression model. But, by construction, the model violates the assumptions of
the classical regression model. The national income data are assembled around some ba-
sic accounting identities, including “Y = C + investment + government spending + net
exports.” Therefore, although the precise relationship between consumption C, and income
Y,C = f(Y,¢), is ambiguous and is a suitable candidate for modeling, it is clear that con-
sumption (and therefore ) is one of the main determinants of Y. The model Ci=a+8Yi+e
does not fit our assumptions for the classical model if CovlY;, & # 0. But it is reasonable to
assume (at least for now) that ¢ is uncorrelated with past values of C and Y. Therefore, in
this model, we might consider Y;_; and C;_; as suitable instrumental variables.

Measurement Error  In Section 5.6, we will examine an application in which an earnings equa-
tion y;.. = f(Education; s, .. .) +¢; ; is specified for sibling pairs (twins) t =1, 2 for n individuals.
Since education is a variable that is measured with error, it will emerge (in a way that will be es-
tablished below) that this is, once again, a case in which the disturbance and an independent
variable are correlated.

None of these models can be consistently estimated by least squares—the method of
instrumental variables is the standard approach.

We will now construct an estimator for # in this extended model. We will maintain
assumption A5 (independent observations with finite moments), though this is only for
convenience. These results can all be extended to cases with dependent observations.
This will preserve the important result that plim(X’'X/n) = Q. (We use the subscript
to differentiate this result from the results given below.) The basic assumptions of the
regression model have changed, however. First, A3 (no correlation between x and ¢) is,
under our new assumptions,

Al3. E[B,‘ |X,‘] = 7.
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We interpret Assumption AI3 to mean that the regressors now provide information
about the expectations of the disturbances. The important implication of AI3 is that the
disturbances and the regressors are now correlated. Assumption AI3 implies that

E[xie] =y

for some nonzero y. If the data are “well behaved,” then we can apply Theorem D.5
(Khinchine’s theorem) to assert that :

plim(1/m)X'e =y

Notice that the original model results if ; = 0. Finally, we must characterize the instru-
mental variables. We assume the following:

Al [x;, z,, &l,i =1,..., n,are an i.i.d. sequence of random variables.
Al8a. E[x}] = Quu < 00, a finite constant, k =1, ..., K.

AlS8b. E[z 1] = Quir < 00, a finite constant, ! =1, . L.

Al8c. E[zyxi] = sz Ik < 00, a finite constant, [ = 1 WL k=1,..., K.
AD9.  E[s 7] =0.

In later work in time series models, it will be important to relax assumption Al7. Finite
means of z follows from AI8b. Using the same analysis as in the preceding section, we
have

plim(1/n)Z'Z = Qy, a finite, positive definite (assumed) matrix,
plim(1/n)Z'X = Qy, a finite, L x K matrix with rank K (assumed),
plim(1/m)Z'e = 0.
In our statement of the classical regression model, we have assumed thus far the special
case of n; = 0; y = 0 follows. There is no need to dispense with Assumption AI7—it
may well continue to be true—but in this special case, it becomes irrelevant.

For this more general model, we lose most of the useful results we had for least
squares. The estimator b is no longer unbiased;

E[bIX] =8+ XX)"'X'y # 8,

so the Gauss-Markov theorem no longer holds. It is also inconsistent;

, C/xx\7to/x
thb=ﬂ+phm< p ) phm( n€>=ﬂ+Q;§r#ﬁ-

(The asymptotic distribution is considered in the exercises.)
We now turn to the instrumental variable estimator. Since E[z;¢;] = 0 and all terms
have finite variances, we can state that

2] (2212 - o ()
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Suppose that Z has the same number of variables as X. For example, suppose in our
consumption function that x, = [1, Y] when z, = [1, ¥,_1]. We have assumed that the
rank of Z’'X is K, so now Z'X is a square matrix. It follows that

' -1 ’
[plim(zx>} plim(Zy> =B,
n n

which leads us to the instrumental variable estimator,

by = (Z'X) 'Zy.

We have already proved that byy is consistent. We now turn to the asymptotic distribu-
tion. We will use the same method as in the previous section. First,

77X\ 1
ﬁ(blv—ﬂ)=< p > ﬁl’e,

which has the same limiting distribution as Q;![(1/4/7)Z e]. Our analysis of (1//n)Z'e

is the same as that of (1//n)X’e in the previous section, so it follows that

1,
<ﬁl e) LN N[O, O’ZQZZ]

and

ZX\'/ 1, _ _
( . > (7,_1—Z €> —d>N[0»UZszlozzszl:|-

This step completes the derivation for the next theorem.
e

THEOREM 5.3 Asymptotic Distribution of the Instrumental
Variables Estimator

If Assumptions Al, A2, AI3, A4, ASS, AS5a, Al7, Al8a—c and AI9 all hold

for [yi, xi, 2, €], where z is a valid set of L = K instrumental variables, then the

asymptotic distribution of the instrumental variables estimator byy = (Z'X)"'Zy

is

a 02
biv ~ N|B. 70;}01&;11}. (5-20)

where Q = plim(Z'X/n) and Qg = plim(Z'Z/n).

To estimate the asymptotic covariance matrix, we will require an estimator of o2.
The natural estimator is

o2 1 ,
02 = ; z_;(yl — Xiblv)z.
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A correction for degrees of freedom, as in the development in the previous section,
is superfluous, as all results here are asymptotic, and 62 would not be unbiased in any
event. (Nonetheless, it is standard practice in most software to make the degrees of
freedom correction.) Write the vector of residuals as

y— Xbpy =y — X(Z'X)"'Z'y.
Substitute y = X8 + € and collect terms to obtain & = [I - X(Z'X) 'Z']e. Now,

Al A
o2 &8
n

_ee e’Z) XZ\NT XX\ (ZXNT (Ze) (X (ZXY! z'e>

T on n n n n n n n n )
We found earlier that we could (after a bit of manipulation) apply the product result for
probability limits to obtain the probability limit of an expression such as this. Without
repeating the derivation, we find that 62 is a consistent estimator of o, by virtue of

the first term. The second and third product terms converge to zero. To complete the
derivation, then, we will estimate Asy. Var[byy] with

| 1 (/&8 /ZX\ /22N (XZN
o= ()3 ()]

=62('X)"(ZLHYXZ).

There is a remaining detail. If Z contains more variables than X, then much of
the preceding is unusable, because Z'X will be L x K with rank K < L and will thus
not have an inverse. The crucial result in all the preceding is plim(Z’e/n) = 0. That is,
every column of Z is asymptotically uncorrelated with . That also means that every
linear combination of the columns of Z is also uncorrelated with e, which suggests that
one approach would be to choose K linear combinations of the columns of Z. Which
to choose? One obvious possibility is simply to choose K variables among the L in Z.
But intuition correctly suggests that throwing away the information contained in the
remaining L — K columns is inefficient. A better choice is the projection of the columns
of X in the column space of Z:

X=72Z7)'7X.

We will return shortly to the virtues of this choice. With this choice of instrumental
variables, X for Z, we have

by = X’X)" X'y

(5-22)
= [XZ(Z'Z) ' X' X'Z(Z'Z)"Zy.
By substituting X in the expression for Est.Asy. Var[byy] and multiplying it out, we see
that the expression is unchanged. The proofs of consistency and asymptotic normality
for this estimator are exactly the same as before, because our proof was generic for any
valid set of instruments, and X qualifies.
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There are two reasons for using this estimator—one practical, one theoretical. If
any column of X also appears in Z, then that column of X is reproduced exactly in
X. This is easy to show. In the expression for X, if the kth column in X is one of the
columns in Z, say the /th, then the kth column in (Z'Z)~'Z’/X will be the /th column of
an L x L identity matrix. This result means that the kth column in X = Z(Z/Z)~'Z'X
will be the /th column in Z, which is the kth column in X. This result is important and
useful. Consider what is probably the typical application. Suppose that the regression
contains K variables, only one of which, say the kth, is correlated with the disturbances.
We have one or more instrumental variables in hand, as well as the other K —1 variables
that certainly qualify as instrumental variables in their own right. Then what we would
use is Z = [Xy, Z1, 22, . . .], where we indicate omission of the kth variable by (k) in
the subscript. Another useful interpretation of X is that each column is the set of fitted
values when the corresponding column of X is regressed on all the columns of Z, which
is obvious from the definition. It also makes clear why each x; that appears in Z is
perfectly replicated. Every x; provides a perfect predictor for itself, without any help
from the remaining variables in Z. In the example, then, every column of X except the
one that is omitted from X4, is replicated exactly, whereas the one that is omitted is
replaced in X by the predicted values in the regression of this variable on all the zs.

Of all the different linear combinations of Z that we might choose, X is the most
efficient in the sense that the asymptotic covariance matrix of an I'V estimator based on
a linear combination ZF is smaller when F = (Z'Z)~'Z’X than with any other F that
uses all L columns of Z; a fortiori, this result eliminates linear combinations obtained
by dropping any columns of Z. This important result was proved in a seminal paper by
Brundy and Jorgenson (1971).

We close this section with some practical considerations in the use of the instru-
mental variables estimator. By just multiplying out the matrices in the expression, you
can show that

by = (X’X)‘lfi'y
= X'I-M)X) ' X' - M)y
— (X'X)—IX’)’

since I — M, is idempotent. Thus, when (and only when) X is the set of instruments,
the IV estimator is computed by least squares regression of y on X. This conclusion
suggests (only logically; one need not actually do this in two steps), that byy can be
computed in two steps, first by computing X, then by the least squares regression. For
this reason, this is called the two-stage least squares (2SLS) estimator. We will revisit this
form of estimator at great length at several points below, particularly in our discussion
of simultaneous equations models, under the rubric of “two-stage least squares.” One
should be careful of this approach, however, in the computation of the asymptotic
covariance matrix; 62 should not be based on X. The estimator

I A Xbyy)'(y — Xbrv)
Sty = "

is inconsistent for o2, with or without a correction for degrees of freedom.
An obvious question is where one is likely to find a suitable set of instrumental
variables. In many time-series settings, lagged values of the variables in the model
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provide natural candidates. In other cases, the answer is less than obvious. The asymp-
totic variance matrix of the IV estimator can be rather large if Z is not highly correlated
with X; the elements of (Z'X) ! grow large. Unfortunately, there usually is not much
choice in the selection of instrumental variables. The choice of Z is often ad hoc.” There
is a bit of a dilemma in this result. It would seem to suggest that the best choices of
instruments are variables that are highly correlated with X. But the more highly corre-
lated a variable is with the problematic columns of X, the less defensible the claim that
these same variables are uncorrelated with the disturbances.

5.5 HAUSMAN’S SPECIFICATION TEST AND
AN APPLICATION TO INSTRUMENTAL
VARIABLE ESTIMATION

It might not be obvious that the regressors in the model are correlated with the dis-
turbances or that the regressors are measured with error. If not, there would be some
benefit to using the least squares estimator rather than the IV estimator. Consider a
comparison of the two covariance matrices under the hypothesis that both are consistent,
that is, assuming plim(1/n)X’e = 0. The difference between the asymptotic covariance
matrices of the two estimators is

2 XZZZ)-' X\ o2 XX\ !
Asy. Var[byy] — Asy. Var[bis] = %plim(———(—)—) - %plim( ) ‘
- ’ n
02
= — plim nXZZ2)'TX) T - XX

To compare the two matrices in the brackets, we can compare their inverses. The in-
verse of the first is X'Z(Z'Z) 'Z'X = X'(I - Mz)X = X’X — X'MzX. Since Mz is a
nonnegative definite matrix, it follows that X’MzX is also. So, X'Z(Z'Z)~'Z’X equals
X’X minus a nonnegative definite matrix. Since X'Z(Z'Z)~'Z/X is smaller, in the matrix
sense, than X'X, its inverse is larger. Under the hypothesis, the asymptotic covariance
matrix of the LS estimator is never larger than that of the IV estimator, and it will
actually be smaller unless all the columns of X are perfectly predicted by regressions on
Z.Thus, we have established that if plim(1/n)X’e = 0—that is, if LS is consistent—then
it is a preferred estimator. (Of course, we knew that from all our earlier results on the
virtues of least squares.)

Our interest in the difference between these two estimators goes beyond the ques-
tion of efficiency. The null hypothesis of interest will usually be specifically whether
plim(1/n)X’e = 0. Seeking the covariance between X and e through (1/n)X’e is fruit-
less, of course, since the normal equations produce (1/7)X’e = 0. In a seminal paper,
Hausman (1978) suggested an alternative testing strategy. [Earlier work by Wu (1973)
and Durbin (1954) produced what turns out to be the same test.] The logic of Hausman’s
approach is as follows. Under the null hypothesis, we have two consistent estimators of

9Results on “optimal instruments™ appear in White (2001) and Hansen (1982). In the other direction, there
is a contemporary literature on “weak” instruments, such as Staiger and Stock (1997). .
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B, bis and byy. Under the alternative hypothesis, only one of these, brv, is consistent.
The suggestion, then, is to examine d = byy —brs. Under the null hypothesis, plimd = 0,
whereas under the alternative, plim d # 0. Using a strategy we have used at various
points before, we might test this hypothesis with a Wald statistic,

H = d' {Est.Asy. Var[d]} 'd.
The asymptotic covariance matrix we need for the test is
Asy. Var[bry — bis] = Asy. Var[bry] + Asy. Var[bs]
— Asy. Cov[byy, b s] — Asy. Cov[brs, brv].

At this point, the test is straightforward, save for the considerable complication that
we do not have an expression for the covariance term. Hausman gives a fundamental
result that allows us to proceed. Paraphrased slightly,

the covariance between an efficient estimator, bg, of a parameter vector, 8, and its
difference from an inefficient estimator, by, of the same parameter vector,bg—by,
is zero.

For our case, bg is brg and by is byy. By Hausman’s result we have
Cov|bg, bg — b;] = Var|bg] — Covlbg, b;] =0
or
Cov[bg, b;] = Var[bg],
SO,
Asy.Var[bry — brs] = Asy. Var|byy] — Asy. Var[bis].

Inserting this useful result into our Wald statistic and reverting to our empirical estimates
of these quantities, we have

H = (by — bys) {Est.Asy. Var[by] — Est.Asy. Var[bys]} ™ (bry — bys).

Under the null hypothesis, we are using two different, but consistent, estimators of 2.
If we use s2 as the common estimator, then the statistic will be

XX - XX)']d
= 5 :

H (5-23)

It is tempting to invoke our results for the full rank quadratic form in a normal
vector and conclude the degrees of freedom for this chi-squared statistic is K. But that
method will usually be incorrect, and worse yet, unless X and Z have no variables in
common, the rank of the matrix in this statistic is less than K, and the ordinary inverse
will not even exist. In most cases, at least some of the variables in X will also appear
in Z. (In almost any application, X and Z will both contain the constant term.) That
is, some of the variables in X are known to be uncorrelated with the disturbances. For
example, the usual case will involve a single variable that is thought to be problematic
or that is measured with error. In this case, our hypothesis, plim(1/n)X’e = 0, does not
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really involve all K variables, since a subset of the elements in this vector, say Ky, are
known to be zero. As such, the quadratic form in the Wald test is being used to test only
K* = K — Ky hypotheses. It is easy (and useful) to show that, in fact, / is a rank K*
quadratic form. Since Z(Z'Z)~'Z’ is an idempotent matrix, X'X) = X'X. Using this
result and expanding d, we find

d=XX)"Xy-XX) Xy
= X'X) ™' [Xy - XX)X'X) 'Xy]
= X'X)"'X'(y - X(X'X)"'X'y)
= (X'X)X’e,

where e is the vector of least squares residuals. Recall that Kj of the columns in X are
the original variables in X. Suppose that these variables are the first K. Thus, the first
K, rows of X’e are the same as the first K rows of X'e, which are, of course 0. (This
statement does not mean that the first K elements of d are zero.) So, we can write d as

e 0 P 0
_ ’ -1 . — ’ -1
d=X%) [X*,J X'X) [q] :
Finally, denote the entire matrix in H by W. (Since that ordinary inverse may not exist,
this matrix will have to be a generalized inverse; see Section A.7.12.) Then, denoting
the whole matrix product by P, we obtain
r KT Ry 1 /%1 0 ;K 0 £y *

H=[0q"]XX)"WX'X) 0| = [0 q”]P q| =9 P.q",
where P, is the lower right K* x K* submatrix of P. We now have the end result.
Algebraically, H is actually a quadratic form in a K* vector, so K* is the degrees of
freedom for the test.

Since the preceding Wald test requires a generalized inverse [see Hausman and
Taylor (1981)], it is going to be a bit cumbersome. In fact, one need not actually
approach the test in this form, and it can be carried out with any regression program.
The alternative approach devised by Wu (1973) is simpler. An F statistic with K* and

n— K — K* degrees of freedom can be used to test the joint significance of the elements
of y in the augmented regression

y=XB+X*y +¢*, (5-24)

where X* are the fitted values in regressions of the variables in X* on Z. This result is
equivalent to the Hausman test for this model. [Algebraic derivations of this result can
be found in the articles and in Davidson and MacKinnon (1993).]

Although most of the results above are specific to this test of correlation between
some of the columns of X and the disturbances, €, the Hausman test is general. To
reiterate, when we have a situation in which we have a pair of estimators, 6 and 6,
such that under Hy: 6 z and 6 ; are both consistent and 8  is efficient relative to 8, while
under H: ; remains consistent while is inconsistent, then we can form a test of the
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hypothesis by referring the “Hausman statistic,”
H = (8; — 65){Est.Asy. Var[,] — Est.Asy. Var[0 ]} '@, — ) - x*[J],

to the appropriate critical value for the chi-squared distribution. The appropriate
degrees of freedom for the test, J, will depend on the context. Moreover, some sort
of generalized inverse matrix may be needed for the matrix, although in at least one
common case, the random effects regression model (see Chapter 13), the appropriate
approach is to extract some rows and columns from the matrix instead. The short rank
issue is not general. Many applications can be handled directly in this form with a full
rank quadratic form. Moreover, the Wu approach is specific to this application. The
other applications that we will consider, fixed and random effects for panel data and the
independence from irrelevant alternatives test for the multinomial logit model, do not
lend themselves to the regression approach and are typically handled using the Wald
statistic and the full rank quadratic form. As a final note, observe that the short rank
of the matrix in the Wald statistic is an algebraic result. The failure of the matrix in the
Wald statistic to be positive definite, however, is sometimes a finite sample problem that
is not part of the model structure. In such a case, forcing a solution by using a general-
ized inverse may be misleading. Hausman suggests that in this instance, the appropriate
conclusion might be simply to take the result as zero and, by implication, not reject the
null hypothesis.

Example 5.3 Hausman Test for a Consumption Function

Quarterly data for 1950.1 to 2000.4 on a number of macroeconomic variables appear in
Table F5.1. A consumption function of the form C; = « + BY; + & is estimated using the 204
observations on aggregate U.S. consumption and disposable personal income. In Exam-
ple 5.2, this model is suggested as a candidate for the possibility of bias due to correlation
between Y; and ¢. Consider instrumental variables estimation using Y;_4 and C;_; as the
instruments for Y;, and, of course, the constant term is its own instrument. One observation
is fost because of the lagged values, so the results are based on 203 quarterly observations.
The Hausman statistic can be computed in two ways:

1. Use the Wald statistic in (5-23) with the Moore—Penrose generalized inverse. The
common s? is the one computed by least squares under the null hypothesis of no
correlation. With this computation, H = 22.111. There is K* = 1 degree of freedom. The
95 percent critical value from the chi-squared table is 3.84. Therefore, we reject the null
hypothesis of no correlation between Y; and «;.

2. Using the Wu statistic based on (5-24), we regress C; on a constant, Y;, and the
predicted value in a regression of Y; on a constant, Y;_; and C;_;. The t ratio on the
prediction is 4.945, so the F statistic with 1 and 201 degrees of freedom is 24.453. The
critical value for this F distribution is 4.15, so, again, the null hypothesis is rejected.

5.6 MEASUREMENT ERROR

Thus far, it has been assumed (at least implicitly) that the data used to estimate the
parameters of our models are true measurements on their theoretical counterparts. In
practice, this situation happens only in the best of circumstances. All sorts of measure-
ment problems creep into the data that must be used in our analyses. Even carefully
constructed survey data do not always conform exactly to the variables the analysts
have in mind for their regressions. Aggregate statistics such as GDP are only estimates
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of their theoretical counterparts, and some variables, such as depreciation, the services
of capital, and “the interest rate,” do not even exist in an agreed-upon theory. At worst,
there may be no physical measure corresponding to the variable in our model; intelli-
gence, education, and permanent income are but a few examples. Nonetheless, they all
have appeared in very precisely defined regression models.

5.6.1 LEAST SQUARES ATTENUATION

In this section, we examine some of the received results on regression analysis with badly
measured data. The general assessment of the problem is not particularly optimistic.
The biases introduced by measurement error can be rather severe. There are almost no
known finite-sample results for the models of measurement error; nearly all the results
that have been developed are asymptotic.!” The following presentation will use a few
simple asymptotic results for the classical regression model.

The simplest case to analyze is that of a regression model with a single regressor and
no constant term. Although this case is admittedly unrealistic, it illustrates the essential
concepts, and we shall generalize it presently. Assume that the model

y'=pBx"+e¢ - (5-25)

conforms to all the assumptions of the classical normal regression model. If data on y*
and x* were available, then 8 would be estimable by least squares. Suppose, however,
that the observed data are only imperfectly measured versions of y* and x*. In the
context of an example, suppose that y* is In(output/labor) and x* is In(capital/labor).
Neither factor input can be measured with precision, so the observed y and x contain
errors of measurement. We assume that

y=y*+v withv ~ NJ[0, 03], (5-26a)
x=x*+u withu~ N[0,07]. (5-26b)

Assume, as well, that u and v are independent of each other and of y* and x*. (As we
shall see, adding these restrictions is not sufficient to rescue a bad situation.)

As a first step, insert (5-26a) into (5-25), assuming for the moment that only y* is
measured with error:

y=Bx"+e+v=p8x"+¢.

This result conforms to the assumptions of the classical regression model. As long as the
regressor is measured properly, measurement error on the dependent variable can be
absorbed in the disturbance of the regression and ignored. To save some cumbersome
notation, therefore, we shall henceforth assume that the measurement error problems
concern only the independent variables in the model.

Consider, then, the regression of y on the observed x. By substituting (5-26b) into
(5-25), we obtain

y=px+ [8 — ﬂu] = fBx+w. (5'27)

108ee, for example, Imbens and Hyslop (2001).
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Since x equals x* + u, the regressor in (5-27) is correlated with the disturbance:

Cov[x, w] = Cov[x* + u, & — fu] = —Bo>. (5-28)

U

This result violates one of the central assumptions of the classical model SO we can
expect the least squares estimator

_ (1/m) 377 xiyi
A/n) Y7 X7

to be inconsistent. To find the probability limits, insert (5 25) and (5-26b) and use the
Slutsky theorem:

mb = plim(1/m) 371, (6 + u) (B + &)
plim(1/n) Y7 (xF + u;)?

Since x*, ¢, and u are mutually independent, this equation reduces to

: B B
Pimb = B o = T4 o2/ 0 29
where Q% = plim(1/n) 3, x}%. Aslong as o is positive, b isinconsistent, with a persistent
bias toward zero. Clearly, the greater the variability in the measurement error, the worse
the bias. The effect of biasing the coefficient toward zero is called attenuation.
In amultiple regression model, matters only get worse. Suppose, to begin, we assume
that y = X*8 + ¢ and X = X* 4+ U, allowing every observation on every variable to be
measured with error. The extension of the earlier result is

plim

!

X’ X
plim( X) =Q*+X,, and plim( y) = Q"B.
. n n

Hence,
plimb = [Q* + Z,,]'Q*8 =B - [Q" + .| 'ZuB- (5-30)

This probability limit is a mixture of all the parameters in the model. In the same fashion
as before, bringing in outside information could lead to identification. The amount of
information necessary is extremely large, however, and this approach is not particularly
promising.

It is common for only a single variable to be measured with error. One might
speculate that the problems would be isolated to the single coefficient. Unfortunately,
this situation is not the case. For a single bad variable—assume that it is the first—the
matrix X, is of the form

auz 0 0
0 0 0
2:uu=

It can be shown that for this special case,

A

plim b; = W

(5-31a)
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(note the similarity of this result to the earlier one), and, for k # 1,

) O,Zq*kl
plim by = B — By {W} ; (5-31b)

where g*4! is the (k, 1)th element in (Q*)~'.!! This result depends on several unknowns

and cannot be estimated. The coefficient on the badly measured variable is still biased
toward zero. The other coefficients are all biased as well, although in unknown direc-
tions. A badly measured variable contaminates all the least squares estimates.!? If more
than one variable is measured with error, there is very little that can be said.!* Although
expressions can be derived for the biases in a few of these cases, they generally depend
on numerous parameters whose signs and magnitudes are unknown and, presumably,
unknowable. ‘

5.6.2 INSTRUMENTAL VARIABLES ESTIMATION

An alternative set of results for estimation in this model (and numerous others) is built
around the method of instrumental variables. Consider once again the errors in variables
model in (5-25) and (5-26a,b). The parameters, 8, 2, g*, and o? are not identified in
terms of the moments of x and y. Suppose, however, that there exists a variable z such
that z is correlated with x* but not with u. For example, in surveys of families, income
is notoriously badly reported, partly deliberately and partly because respondents often
neglect some minor sources. Suppose, however, that one could determine the total
amount of checks written by the head(s) of the household. It is quite likely that this z
would be highly correlated with income, but perhaps not significantly correlated with
the errors of measurement. If Cov{x*, z] is not zero, then the parameters of the model
become estimable, as

(I/m) > yvizi B Covlx*,z] -
(/n) ¥, %z Covlx* z] — B (5-32)

In a multiple regression framework, if only a single variable is measured with error,
then the preceding can be applied to that variable and the remaining variables can serve
as their own instruments. If more than one variable is measured with error, then the
first preceding proposal will be cumbersome at best, whereas the second can be applied
to each.

For the general case, y = X*f + e, X = X* + U, suppose that there exists a matrix
of variables Z that is not correlated with the disturbances or the measurement error but
is correlated with regressors, X. Then the instrumental variables estimator based on Z,
brv = (Z'X)~'Z'y, is consistent and asymptotically normally distributed with asymptotic
covariance matrix that is estimated with

Est.Asy. Var[byy] = 62 [Z/'X] ' [Z'Z][X'Z] . (5-33)

plim

For more general cases, Theorem 5.3 and the results in Section 5.4 apply.

UUse (A-66) to invert [Q* + £,,] = [Q* + (0,e)(a,e;)], where ey is the first column of a K x K identity
matrix. The remaining results are then straightforward.

2This point is important to remember when the presence of measurement error is suspected.

13Some firm analytic results have been obtained by Levi (1973), Theil (1961), Klepper and Leamer (1983),
Garber and Klepper (1980), and Griliches (1986) and Cragg (1997).
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5.6.3 PROXY VARIABLES

In some situations, a variable in a model simply has no observable counterpart. Edu-
cation, intelligence, ability, and like factors are perhaps the most common examples.
In this instance, unless there is some observable indicator for the variable, the model
will have to be treated in the framework of missing variables. Usually, however, such an
indicator can be obtained; for the factors just given, years of schooling and test scores
of various sorts are familiar examples. The usual treatment of such variables is in the
measurement error framework. If, for example,

income = B; + B, education + ¢
and
years of schooling = education + u,

then the model of Section 5.6.1 applies. The only difference here is that the true variable
in the modelis “latent.” No amount of improvement in reporting or measurement would
bring the proxy closer to the variable for which it is proxying.

The preceding is a pessimistic assessment, perhaps more so than necessary. Consider
a structural model,

Earnings = B1 + B> Experience + B3 Industry + B4 Ability + ¢

Ability is unobserved, but suppose that an indicator, say IQ is. If we suppose that IQ is
related to Ability through a relationship such as

1Q = a1 + o Ability +v

then we may solve the second equation for Ability and insert it in the first to obtain the
reduced form equation

Earnings = (B1 — a1/a) + B2 Experience + B3 Industry + (Ba/a2)IQ + (8 — v/az).

This equation is intrinsically linear and can be estimated by least squares. We do not
have a consistent estimator of B; or B4, but we do have one of the coefficients of interest.
This would appear to “solve” the problem. We should note the essential ingredients;
we require that the indicator, /Q, not be related to the other variables in the model, and
we also require that v not be correlated with any of the variables. In this instance, some
of the parameters of the structural model are identified in terms of observable data.
Note, though, that /Q is not a proxy variable, it is an indicator of the latent variable,
Ability. This form of modeling has figured prominently in the education and educational
psychology literature. Consider, in the preceding small model how one might proceed
with not just a single indicator, but say with a battery of test scores, all of which are
indicators of the same latent ability variable.

It is to be emphasized that a proxy variable is not an instrument (or the reverse).
Thus, in the instrumental variables framework, it is implied that we do not regress y on
Z to obtain the estimates. To take an extreme example, suppose that the full model was

y=X8+e,
X=X"+U,
Z=X"+W.
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That is, we happen to have two badly measured estimates of X*. The parameters of this
model can be estimated without difficulty if W is uncorrelated with U and X*, but not
by regressing y on Z. The instrumental variables technique is called for.

When the model contains a variable such as education or ability, the question that
naturally arises is, If interest centers on the other coefficients in the model, why not
just discard the problem variable?'* This method produces the familiar problem of an
omitted variable, compounded by the least squares estimator in the full model being
inconsistent anyway. Which estimator is worse? McCallum (1972) and Wickens (1972)
show that the asymptotic bias (actually, degree of inconsistency) is worse if the proxy
is omitted, even if it is a bad one (has a high proportion of measurement error). This
proposition neglects, however, the precision of the estimates. Aigner (1974) analyzed
this aspect of the problem and found, as might be expected, that it could go either way.
He concluded, however, that “there is evidence to broadly support use of the proxy.”

5.6.4 APPLICATION: INCOME AND EDUCATION AND
A STUDY OF TWINS

The traditional model used in labor economics to study the effect of education on
income is an equation of the form

yi = B1 + B> age; + B3 age? + By education; + x.8s + &,

where y; is typically a wage or yearly income (perhaps in log form) and x; contains other
variables, such as an indicator for sex, region of the country, and industry. The literature
contains discussion of many possible problems in estimation of such an equation by
least squares using measured data. Two of them are of interest here:

1. Although “education” is the variable that appears in the equation, the data
available to researchers usually include only “years of schooling.” This variable is
a proxy for education, so an equation fit in this form will be tainted by this
problem of measurement error. Perhaps surprisingly so, researchers also find that
reported data on years of schooling are themselves subject to error, so there is a
second source of measurement error. For the present, we will not consider the first
(much more difficult) problem.

2. Other variables, such as “ability”—we denote these y;—will also affect income
and are surely correlated with education. If the earnings equation is estimated in
the form shown above, then the estimates will be further biased by the absence of
this “omitted variable.” For reasons we will explore in Chapter 22, this bias has
been called the selectivity effect in recent studies.

Simple cross-section studies will be considerably hampered by these problems. But, in
a recent study, Ashenfelter and Krueger (1994) analyzed a data set that allowed them,
with a few simple assumptions, to ameliorate these problems.

Annual “twins festivals” are held at many places in the United States. The largest
is held in Twinsburg, Ohio. The authors interviewed about 500 individuals over the
age of 18 at the August 1991 festival. Using pairs of twins as their observations enabled
them to modify their model as follows: Let (y;;, A;;) denote the earnings and age for

4This discussion applies to the measurement error and latent variable problems equally.



CHAPTER 5 4 Large-Sample Properties 89

twin j, j =1, 2, for pair i. For the education variable, only self-reported “schooling”
data, S;;, are available. The authors approached the measurement problem in the
schooling variable, S;;, by asking each twin how much schooling they had and how
much schooling their sibling had. Denote schooling reported by sibling m of sibling j
by S;; (m). So, the self-reported years of schooling of twin 1 is §;;(1). When asked how
much schooling twin 1 has, twin 2 reports S;1(2). The measurement error model for the
schooling variable is

Sijm) = Sj; +u;j(my, j,m=1,2, where S;; = “true” schooling for twinjof pair i.

We assume that the two sources of measurement error, u;;(m), are uncorrelated and
have zero means. Now, consider a simple bivariate model such as the one in (5-25):

Yij = BSij + &ij.

Aswesaw earlier, aleast squares estimate of 8 using the reported data will be attenuated:
B x Var[§;]

Var[S;;] + Var[w;; (j)]

(Since there is no natural distinction between twin 1 and twin 2, the assumption that
the variances of the two measurement errors are equal is innocuous.) The factor ¢ is
sometimes called the reliability ratio. In this simple model, if the reliability ratio were
known, then g could be consistently estimated. In fact, this construction of this model
allows just that. Since the two measurement errors are uncorrelated,

Corr[§;1(1), Si1(2)] = Corr[Si2(1), Si2(1)]

Var[ ]
{{Var[S;1] + Var[ua (1)]} x {Var[Si] + Var[ul-1(2)]}}1/2 1
In words, the correlation between the two reported education attainments measures
the reliability ratio. The authors obtained values of 0.920 and 0.877 for 298 pairs of
identical twins and 0.869 and 0.951 for 92 pairs of fraternal twins, thus providing a quick
assessment of the extent of measurement error in their schooling data.

Since the earnings equation is a multiple regression, this result is useful for an
overall assessment of the problem, but the numerical values are not sufficient to undo
the overall biases in the least squares regression coefficients. An instrumental variables
estimator was used for that purpose. The estimating equation for y;; = In Wage;; with
the least squares (LS) and instrumental variable (IV) estimates is as follows:

Yij = B1 + B age; + B3 age? + BuSij(j) + BsSim(m) + P sex; + By race; + &;
LS (0.088) (—0.087) (0.084) (0.204) (—-0.410)
1A% (0.088) (—0.087) (0.116) (0.037) (0.206) (—0.428)

In the equation, S;;(j) is the person’s report of his or her own years of schooling and
Sim(m) is the sibling’s report of the sibling’s own years of schooling. The problem vari-
able is schooling. To obtain consistent estimates, the method of instrumental variables
was used, using each sibling’s report of the other sibling’s years of schooling as a pair
of instrumental variables. The estimates reported by the authors are shown below the
equation. (The constant term was not reported, and for reasons not given, the sec-
ond schooling variable was not included in the equation when estimated by LS.) This

plim b =
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preliminary set of results is presented to give a comparison to other results in the litera-
ture. The age, schooling, and gender effects are comparable with other received results,
whereas the effect of race is vastly different, —40 percent here compared with a typical
value of 49 percent in other studies. The effect of using the instrumental variable es-
timator on the estimates of 84 is of particular interest. Recall that the reliability ratio
was estimated at about 0.9, which suggests that the I'V estimate would be roughly 11
percent higher (1/0.9). Since this result is a multiple regression, that estimate is only a
crude guide. The estimated effect shown above is closer to 38 percent.

The authors also used a different estimation approach. Recall the issue of selection
bias caused by unmeasured effects. The authors reformulated their model as

vij = B1 + B2 age; + Bs age} + BuSij(j) + Bo sex; + By race; + wi + &;

Unmeasured latent effects, such as “ability,” are contained in y;. Since y; is not ob-
servable but is, it is assumed, correlated with other variables in the equation, the least
squares regression of y;; on the other variables produces a biased set of coefficient
estimates. The difference between the two earnings equations is

yi1 — Yiz = Ba[Si1(1) — $2(D)] + &1 — i

This equation removes the latent effect but, it turns out, worsens the measurement
error problem. As before, 84 can be estimated by instrumental variables. There are two
instrumental variables available, S;2(1) and S;;(2). (It is not clear in the paper whether
the authors used the two separately or the difference of the two.) The least squares
estimate is 0.092, which is comparable to the earlier estimate. The instrumental variable
estimate is 0.167, which is nearly 82 percent higher. The two reported standard errors
are 0.024 and 0.043, respectively. With these figures, it is possible to carry out Hausman’s
test;

(0.167 — 0.092)>
0.043% — 0.0242

The 95 percent critical value from the chi-squared distribution with one degree of free-
dom is 3.84, so the hypothesis that the LS estimator is consistent would be rejected.
(The square root of H,2.102, would be treated as a value from the standard normal dis-
tribution, from which the critical value would be 1.96. The authors reported a ¢ statistic
for this regression of 1.97. The source of the difference is unclear.)

H= =4.418.

5.7 SUMMARY AND CONCLUSIONS

This chapter has completed the description begun in Chapter 4 by obtaining the large
sample properties of the least squares estimator. The main result is that in large samples,
the estimator behaves according to a normal distribution and converges in probability to
the true coefficient vector. We examined several data types, with one of the end results
being that consistency and asymptotic normality would persist under a variety of broad
assumptions about the data. We then considered a class of estimators, the instrumental
variable estimators, which will retain the important large sample properties we found
earlier, consistency and asymptotic normality, in cases in which the least squares estima-
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tor is inconsistent. Two common applications include dynamic models, including panel
data models, and models of measurement error.

Key Terms and Concepts

¢ Asymptotic distribution e Finite sample properties e Measurement error
¢ Asymptotic efficiency ¢ Grenander conditions ¢ Panel data
¢ Asymptotic normality e Hausman’s specification test e Probability limit
e Asymptotic covariance o Identification ¢ Reduced form equation
matrix e Indicator » Reliability ratio
¢ Asymptotic properties e Instrumental variable e Specification test
¢ Attenuation e Lindberg-Feller central e Stationary process
¢ Consistency limit theorem e Stochastic regressors
¢ Dynamic regression ¢ Maximum likelihood e Structural model
» Efficient scale estimator » Two stage least squares
¢ Ergodic e Mean square convergence
Exercises

1. For the classical normal regression model y = X8 + & with no constant term and
K regressors, what is plim F[K, n — K] = plim assuming that the true
value of 8 is zero?

2. Let e; be the ith residual in the ordinary least squares regression of y on X in the
classical regression model, and let ¢; be the corresponding true disturbance. Prove
that plim(e; — &;) = 0.

3. For the simple regression model y; = u + ¢;, & ~ N[0, 0?], prove that the sam-
ple mean is consistent and asymptotically normally distributed. Now consider the

alternative estimator ft = Y, w;y;,, w; = m = i’—l Note that , w; = 1.
i

Prove that this is a consistent estimator of u and obtain its asymptotic variance.
[Hint: 3", i% = n(n+ 1)(2n + 1) /6.]

4. In the discussion of the instrumental variables estimator we showed that the least
squares estimator b is biased and inconsistent. Nonetheless, b does estimate some-
thing: plimb = 8 = B + Q'y. Derive the asymptotic covariance matrix of b, and
show that b is asymptotically normally distributed.

5. For the model in (5-25) and (5-26), prove that when only x* is measured with error,
the squared correlation between y and x is less than that between y* and x*. (Note
the assumption that y* = y.) Does the same hold true if y* is also measured with
error?

6. Christensen and Greene (1976) estimated a generalized Cobb-Douglas cost func-
tion of the form

In(C/Ps) = o + BIn Q+ y(In® Q)/2 + 8 In(Pe/ Py) + & In(F/ Py) + .

P, P and P; indicate unit prices of capital, labor, and fuel, respectively, Q is
output and C is total cost. The purpose of the generalization was to produce a
U-shaped average total cost curve. (See Example 7.3 for discussion of Nerlove’s
(1963) predecessor to this study.) We are interested in the output at which the cost
curve reaches its minimum. That is the point at which (dInC/9In Q)| p—¢- = 1
or @ = exp[(l — B)/y]. The estimated regression model using the Christensen

(1-RY)/(n-K)’
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and Greene 1970 data are as follows, where estimated standard errors are given in
parentheses:

In(C/ Pr) = —7.294 4+ 0.39091 In Q + 0.062413(In* Q)/2
(0.34427) (0.036988) (0.0051548)

+0.07479 In( P/ Py) + 0.2608 In(P,/ Pf) + .
(0.061645) (0.068109)

The estimated asymptotic covariance of the estimators of 8 and y is —0.000187067,
R? = 0.991538 and e’e = 2.443509. Using the estimates given above, compute the
estimate of this efficient scale. Compute an estimate of the asymptotic standard
error for this estimate, then form a confidence interval for the estimated efficient
scale. The data for this study are given in Table F5.2. Examine the raw data and
determine where in the sample the efficient scale lies. That is, how many firms in
the sample have reached this scale, and is this scale large in relation to the sizes of
firms in the sample?

7. The consumption function used in Example 5.3 is a very simple specification. One
might wonder if the meager specification of the model could help explain the finding
in the Hausman test. The data set used for the example are given in Table F5.1. Use
these data to carry out the test in a more elaborate specification ‘

¢ = P1+ Beyr + Bair + Paci—1 + &

where ¢, is the log of real consumption, y, is the log of real disposable income, and
iy is the interest rate (90-day T bill rate).

8. Suppose we change the assumptions of the model to AS5: (x;, ¢) are an independent
and identically distributed sequence of random vectors such that x; has a finite
mean vector, f,, finite positive definite covariance matrix X, and finite fourth
moments E [x;XxX;Xm] = ¢ 1 for all variables. How does the proof of consistency
and asymptotic normality of b change? Are these assumptions weaker or stronger
than the ones made in Section 5.2?

9. Now, assume only finite second moments of x; E[x?] is finite. Is this sufficient to
establish consistency of b? (Hint: the Cauchy-Schwartz inequality (Theorem D.13),
Elxyl] < {E [xz]}l/ 2{E [yz]}l/ ? will be helpful.) Is this assumption sufficient to
establish asymptotic normality? '
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INFERENCE AND
PREDICTION
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INTRODUCTION

~ The linear regression model is used for three major functions: estimation, which was

the subject of the previous three chapters (and most of the rest of this book), hypothesis
testing, and prediction or forecasting. In this chapter, we will examine some applications
of hypothesis tests using the classical model. The basic statistical theory was developed
in Chapters 4, 5, and Appendix C, so the methods discussed here will use tools that
are already familiar. After the theory is developed in Sections 6.2-6.4, we will examine
some applications in Sections 6.4 and 6.5. We will be primarily concerned with linear
restrictions in this chapter, and will turn to nonlinear restrictions near the end of the
chapter, in Section 6.5. Section 6.6 discusses the third major use of the regression model,
prediction.

6.2 RESTRICTIONS AND NESTED MODELS

One common approach to testing a hypothesis is to formulate a statistical model that
contains the hypothesis as a restriction on its parameters. A theory is said to have
testable implications if it implies some testable restrictions on the model. Consider, for
example, a simple model of investment, /;, suggested by Section 3.3.2,

Inl; = B1 + Boiy + B3Ap, + BaIn Y, + Bst + &4, (6-1)

which states that investors are sensitive to nominal interest rates, i;, the rate of inflation,
Apy, (the log of) real output, In ¥;, and other factors which trend upward through time,
embodied in the time trend, . An alternative theory states that “investors care about
real interest rates.” The alternative model is

Inl; = B1+ By — Ap) + BsAp, + BaIn Y, + Bst + &;. (6-2)

Although this new model does embody the theory, the equation still contains both
nominal interest and inflation. The theory has no testable implication for our model.
But. consider the stronger hypothesis, “investors care only about real interest rates.”
The resulting equation,

Inl =B+ Bolic — Ap) + Baln Y, + Bst + &, (6-3)

is now restricted; in the context of the first model, the implication is that 8, + 83 = 0.
The stronger statement implies something specific about the parameters in the equation
that may or may not be supported by the empirical evidence.

93
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The description of testable implications in the preceding paragraph suggests (cor-
rectly) that testable restrictions will imply that only some of the possible models con-
tained in the original specification will be “valid;” that is, consistent with the theory. In
the example given earlier, equation (6-1) specifies a model in which there are five unre-
stricted parameters (81, B2, B3, B4, Bs). But, equation (6-3) shows that only some values
are consistent with the theory, that is, those for which 85 = —B,. This subset of values
is contained within the unrestricted set. In this way, the models are said to be nested.
Consider a different hypothesis, “investors do not care about inflation.” In this case, the
smaller set of coefficients is (81, 82, 0, B4, Bs). Once again, the restrictions imply a valid
parameter space that is “smaller” (has fewer dimensions) than the unrestricted one.
The general result is that the hypothesis specified by the restricted model is contained
within the unrestricted model.

Now, consider an alternative pair of models: Modely: “Investors care only about
inflation;” Model;: “Investors care only about the nominal interest rate.” In this case,
the two parameter vectors are (81,0, B3, B4, Bs) by Modely and (81, B2, 0, B4, Bs) by
Model;. In this case, the two specifications are both subsets of the unrestricted model,
but neither model is obtained as a restriction on the other. They have the same number of
parameters; they just contain different variables. These two models are nonnested. We
are concerned only with nested models in this chapter. Nonnested models are considered
in Section 8.3.

Beginning with the linear regression model

y=XB+e,
we consider a set of linear restrictions of the form

rupr+rf+ - +rikBrk =aq
mpL+rpfr+---+ bk =q

rnpr+rop+--+rikfr=qs.

These can be combined into the single equation

R =q.

Eachrow of R s the coefficients in one of the restrictions. The matrix R has K columns to
be conformable with 8,/ rows for a total of J restrictions, and full row rank, soJ must be
less than or equal to K. The rows of R must be linearly independent. Although it does not
violate the condition, the case of J = K must also be ruled out.! The restriction Rf = q
imposes J restrictions on K otherwise free parameters. Hence, with the restrictions
imposed, there are, in principle, only K — J free parameters remaining. One way to
view this situation is to partition R into two groups of columns, one with J and one
with K — J, so that the first set are linearly independent. (There are many ways to do
s0; any one will do for the present.) Then, with 8 likewise partitioned and its elements

fthe K slopes satisfy J = K restriction, then R is square and nonsingular and 8 = R~!q. There isno estimation
or inference problem. .



CHAPTER 6 4 Inference and Prediction 95

reordered in whatever way is needed, we may write
RS =R;8; +R:8, =q.
If the J columns of R; are independent, then
B =R;'[q—Rof;]. (6-4)

The implication is that although B, is free to vary, once 8, is determined, $, is determined
by (6-4). Thus, only the K —J elements of 3, are free parameters in the restricted model.

6.3 TWO APPROACHES TO TESTING HYPOTHESES

Al

Hypothesis testing of the sort suggested above can be approached from two viewpoints.
First, having computed a set of parameter estimates, we can ask whether the estimates
come reasonably close to satisfying the restrictions implied by the hypothesis. More
formally, we can ascertain whether the failure of the estimates to satisfy the restrictions
is simply the result of sampling error or is instead systematic. An alternative approach
might proceed as follows. Suppose that we impose the restrictions implied by the theory.
Since unrestricted least squares is, by definition, “least squares,” this imposition must
lead to a loss of fit. We can then ascertain whether this loss of fit results merely from
sampling error or whether it is so large as to cast doubt on the validity of the restrictions.
We will consider these two approaches in turn, then show that (as one might hope) within
the framework of the linear regression model, the two approaches are equivalent.

AN IMPORTANT ASSUMPTION
To develop the test statistics in this section, we will assume normally distributed distur-
bances. As we sawin Chapter 4, with this assumption, we will be able to obtain the exact
distributions of the test statistics. In the next section, we will consider the implications

of relaxing this assumption and develo It ti t of Its that all o
proceed without it. .

6.3.1 THE F STATISTIC AND THE LEAST SQUARES DISCREPANCY

We now consider testing a set of J linear restrictions stated in the null hypothesis,
Hy:RB-q=0

against the alternative hypothesis,
H, :RB —q#0.

Eachrow of Ris the coefficients in a linear restriction on the coefficient vector. Typically,
R will have only a few rows and numerous zeros in each row. Some examples would be
as follows:

1. One of the coefficients is zero, 8; = 0

R=[0 0 --- 1 0 -.- 0] and q=0.
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2. Two of the coefficients are equal, B, = 8;,
R=[0 01 ... -1 ..~ 0] and q=0.
3. A set of the coefficients sum to one, 8, + 83 + B+ = 1,
R=[0 1110 -] and q=1.
4, A subset of the coefficients are all zero, g1 =0, fo = 0,and g3 =0,

1000 ---0 0
R=|{0100 -+ 0 =[:0] and q= |0f.
0010 0

Bs =0and s+ B =0,

+
0110 0 1
R=(0 0 0 1 1| and q=|0].
000011 0

6. All the coefficients in the model except the constant term are zero. [See (4-15) and
Section 4.7.4.]

R=[0:T¢,] and q=0.

Given the least squares estimator b, our interest centers on the discrepancy vector
Rb — q = m. It is unlikely that m will be exactly 0. The statistical question is whether
the deviation of m from 0 can be attributed to sampling error or whether it is significant.
Since b is normally distributed [see (4-8)] and m is a linear function of b, m is also
normally distributed. If the null hypothesis is true, then RS — q = 0 and m has mean
vector

Em|X]=RED|X]-q=RB-q=0.
and covariance matrix
Var{m | X] = Var[Rb — q|X] = R{ Var[b| X]}R’ = o’R(X'X)"'R.
We can base a test of Hy on the Wald criterion:

W = m’{Var[m|X]}71m.

— Rb—q[0’RXX)"'R]'Rb—q) (6-5)
(Rb — @'[RX’X)"'R']"'(Rb — q)
~ x*[J].

The statistic W has a chi-squared distribution with J degrees of freedom if the hypothesis
is correct.2 Intuitively, the larger m is—that is, the worse the failure of least squares
to satisty the restrictions—the larger the chi-squared statistic. Therefore, a large chi-
squared value will weigh against the hypothesis.

2This calculation is an application of the “full rank quadratic form” of Section B.10.5.
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The chi—squared statistic in (6-5) is not usable because of the unknown o2. By using
s? instead of o2 and dividing the result by J, we obtain a usable Fstatistic with.J and n— K
degrees of freedom. Making the substitution in (6-5), dividing by J, and multiplying and
dividing by n — K, we obtain
4 o?
T s?

_ [ (Rb—q)[RXX’X)"'R]"!(Rb — q) (l o\ (=K (6-6)
—( o2 ) J><s2>((n—K))

_ (Rb —q)[0’RX’X)"'R'] '(Rb —q)/J
B [(n — K)s?/a?]/(n— K)

If RS = q, that is, if the null hypothesis is true, then Rb — q = Rb RB=R(b-8) =
R(X'X)"!'X’e. [See (4-4).] Let C = [R(X’X)"'R’] since

Rb-§) _ R(X'X)‘IX'<£> - D(f),
o o

o

the numerator of F equals [(¢/0)T(e/c)]/J where T = D’C'D. The numerator is
W/J from (6-5) and is distributed as 1/J times a chi-squared[/ ], as we showed earlier.
We found in (4-6) that s’ =e’e/(n — K) =&'Me/(n — K) where M is an idempotent
matrix. Therefore, the denominator of F equals [(¢/0)'M(e/o)]/(n — K). This statistic
is distributed as 1/(n — K) times a chi-squared[n — K]. [See (4-11).] Therefore, the F
statistic is the ratio of two chi-squared variables each divided by its degrees of freedom.
Since M(e/0) and T(e /o) are both normally distributed and their covariance TM is 0,
the vectors of the quadratic forms are independent. The numerator and denominator
of F are functions of independent random vectors and are therefore independent. This
completes the proof of the F distribution. [See (B-35).] Canceling the two appearances
of 62 in (6-6) leaves the F statistic for testing a linear hypothesis:

(Rb — q) {R[sZ(X’X)_ ]R’} (Rb -q)

FlJ,n—-K]= 7

For testing one linear restriction of the form

Hy:rpi+np+ -+rxkPx=rpg=gq,
(usually, some of the rs will be zero.) the F statistic is
(Z;rib; — q)?
E]' EkrjrkEst. COV[bj, bk] '

If the hypothesis is that the jth coefficient is equal to a particular value, then R has a
single row with a 1 in the jth position, R(X’X)~!R’ is the jth diagonal element of the
inverse matrix, and Rb — q is (b; — g). The F statistic is then

(bj — g
Est. Var[b;]’

Consider an alternative approach. The sample estimate of r'8 is

F[l,n—K]:

(6-7)

F[1,n— K] =

riby+rb+ - +rxbg =rb=4.
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If g differs significantly from g, then we conclude that the sample data are not consistent
with the hypothesis. It is natural to base the test on

t_é—q
se(q)
We require an estimate of the standard error of §. Since § is a linear function of b and we

have an estimate of the covariance matrix of b, s2(X’X)~1, we can estimate the variance
of § with

(6-8)

Est. Var[g | X] = F[s2(X'X) ]r.

The denominator of ¢ is the square root of this quantity. In words, ¢ is the distance in
standard error units between the hypothesized function of the true coefficients and the
same function of our estimates of them. If the hypothesis is true, then our estimates
should reflect that, at least within the range of sampling variability. Thus, if the absolute
value of the preceding ¢ ratio is larger than the appropriate critical value, then doubt is
cast on the hypothesis.

There is a useful relationship between the statistics in (6-7) and (6-8). We can write
the square of the ¢ statistic as

a__@-@ _@b- {2 XX) e} (b — g)
C Var(@—q1X) 1 :

It follows, therefore, that for testing a single restriction, the ¢ statistic is the square root
of the F statistic that would be used to test that hypothesis.

Example 6.1 Restricted Investment Equation
Section 6.2 suggested a theory about the behavior of investors: that they care only about real
interest rates. If investors were only interested in the real rate of interest, then equal increases
in interest rates and the rate of inflation would have no independent effect on investment.
The null hypothesis is

Ho: B2+ 3 =0.

Estimates of the parameters of equations (6-1) and (6-3) using 1950.1 t0 2000.4 quarterly data
on real investment, real gdp, an interest rate (the 90-day T-bill rate) and inflation measured
by the change in the log of the CPI (see Appendix Table F5.1) are given in Table 6.1. (One
observation is lost in computing the change in the CPI.)

Estimated Investment Equati
_parentheses)

B1 B2 Bs B4 Bs
Model (6-1) -9.135 —0.00860 0.00331 1.930 —0.00566
(1.366) (0.00319) (0.00234) (0.183) (0.00149)

s =0.08618, R?=0979753, e'e= 147052,
Est. Cov[b,, bs] = —3.718¢ — 6

Model (6-3) ~7.907 —0.00443 0.00443 1.764 —0.00440
(1.201) 0.00227)  (0.00227)  (0.161) (0.00133)

5 =0.8670, R®=0.979405, e'e=1.49578
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To form the appropriate test statistic, we require the standard error of § = b, + b;,
which is

se(d) = [0.00319% + 0.00234% + 2(—3.718 x 107%)]"/? = 0.002866.

The t ratio for the test is therefore

_ —0.00860 + 0.00331
N 0.002866

Using the 95 percent critical value from t [203-5] = 1.96 (the standard normal value), we
conclude that the sum of the two coefficients is not significantly different from zero, so the
hypothesis should not be rejected.

There will usually be more than one way to formulate a restriction in a regression model.
One convenient way to parameterize a constraint is to set it up in such a way that the standard
test statistics produced by the regression can be used without further computation to test the
hypothesis. In the preceding example, we could write the regression model as specified in
(6-2). Then an equivalent way to test Hy would be to fit the investment equation with both the
real interest rate and the rate of inflation as regressors and to test our theory by simply testing
the hypothesis that 83 equals zero, using the standard t statistic that is routinely computed.
When the regression is computed this way, b; = —0.00529 and the estimated standard error
is 0.00287, resulting in a t ratio of —1.844(). (Exercise: Suppose that the nominal interest
rate, rather than the rate of inflation, were included as the extra regressor. What do you think
the coefficient and its standard error would be?)

Finally, consider a test of the joint hypothesis

= —1.845.

Bo + B3 = 0 (investors consider the real interest rate),
Ba =1 (the marginal propensity to invest equals 1),

Bs = 0 (there is no time trend).

Then,

01100 0 ~0.0053
R=(0 0 0 1 0/, g=|{1| and Rb—q=| 0.9302].
0000 1 0 —0.0057

Inserting these values in F yields F = 109.84. The 5 percent critical value for F[3, 199] from the
table is 2.60. We conclude, therefore, that these data are not consistent with the hypothesis.
The result gives no indication as to which of the restrictions is most influential in the rejection
of the hypothesis. If the three restrictions are tested one at a time, the t statistics in (6-8)
are —1.844, 5.076, and —3.803. Based on the individual test statistics, therefore, we would
expect both the second and third hypotheses to be rejected.

6.3.2 THE RESTRICTED LEAST SQUARES ESTIMATOR

A different approach to hypothesis testing focuses on the fit of the regression. Recall
that the least squares vector b was chosen to minimize the sum of squared deviations,
e’e. Since R’ equals 1 — €’e/y’M"y and y’M'y is a constant that does not involve b, it
follows that b is chosen to maximize R?. One might ask whether choosing some other
value for the slopes of the regression leads to a significant loss of fit. For example, in the
investment equation in Example 6.1, one might be interested in whether assuming the
hypothesis (that investors care only about real interest rates) leads to a substantially
worse fit than leaving the model unrestricted. To develop the test statistic, we first
_ examine the computation of the least squares estimator subject to a set of restrictions.
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Suppose that we explicitly impose the restrictions of the general linear hypothesis
in the regression. The restricted least squares estimator is obtained as the solution to

Minimizep, S(bg) = (y — Xby)' (y — Xby) subject to Rby = q. (6-9)
A Lagrangean function for this problem can be written
L*(bo, 1) = (y — Xbo) (y — Xbo) +2V'(Rby —q).>  (6-10)

The solutions b, and A, will satisfy the necessary conditions

aL*
T —-2X'(y — Xb,) + 2R'A, =0
’ 6-11
oL _ 2(Rb ) =10 “
on, o ¥ET
Dividing through by 2 and expanding terms produces the partitioned matrix equation
XX R'|b,| ([Xy
RN o
or
Ad, =v.

Assuming that the partitioned matrix in brackets is nonsingular, the restricted least
squares estimator is the upper part of the solution

d,=Alv. (6-13)

If, in addition, X’X is nonsingular, then explicit solutions for b, and A, may be obtained
by using the formula for the partitioned inverse (A-74),*

b, =b — (X'X)"'R[RX'X)"IR’]"'(Rb — q)
=b—-Cm
and (6-14)
b = [RXX)™'R™ (Rb — g).

Greene and Seaks (1991) show that the covariance matrix for b, is simply o2 times
the upper left block of A~1. Once again, in the usual case in which X'X is nonsingular,
an explicit formulation may be obtained:

Varfb, | X] = o?(X’X) ! — ¢2(X’X)"'R'[RX’X) 'R 'R(X’X) . (6-15)
Thus,

Var[b, | X] = Var|b | X]—a nonnegative definite matrix.

3Since A is not restricted, we can formulate the constraints in terms of 2A. Why this scaling is convenient will
be clear shortly.

“The general solution given for d, may be usable even if X'X is singular. Suppose, for example, that X'X is
4 x 4 with rank 3. Then X'X is singular. But if there is a parametric restriction on g, then the 5 x 5 matrix
in brackets may still have rank 5. This formulation and a number of related results are given in Greene and
Seaks (1991).
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One way to interpret this reduction in variance is as the value of the information con-
tained in the restrictions.

Note that the explicit solution for &, involves the discrepancy vector Rb — q. If the
unrestricted least squares estimator satisfies the restriction, the Lagrangean multipliers
will equal zero and b, will equal b. Of course, this is unlikely. The constrained solution
b, is equal to the unconstrained solution b plus a term that accounts for the failure of
the unrestricted solution to satisty the constraints.

6.3.3 THE LOSS OF FIT FROM RESTRICTED LEAST SQUARES

To develop a test based on the restricted least squares estimator, we consider a single
coefficient first, then turn to the general case of J linear restrictions. Consider the change
in the fit of a multiple regression when a variable z is added to a model that already
contains K — 1 variables, x. We showed in Section 3.5 (Theorem 3.6), (3-29) that the
effect on the fit would be given by

Ry, = Ry + (1 - RR)riz, (6-16)

where Rg, is the new R? after z is added, Ry is the original R* and r;, is the partial
correlation between y and z, controlling for x. So, as we knew, the fit improves (or, at
the least, does not deteriorate). In deriving the partial correlation coefficient between
y and z in (3-23) we obtained the convenient result

2

*2 tz
- (61T
TR n-K) @17

where ¢2 is the square of the ¢ ratio for testing the hypothesis that the coefficient on z is
zero in the multiple regression of y on X and z. If we solve (6-16) for r;f and (6-17) for
t2 and then insert the first solution in the second, then we obtain the result

R, — R:)/1 ;
2= ( e %)/ . (6-18)
(1-Rg,)/(n—K)
We saw at the end of Section 6.3.1 that for a single restriction, such as 8, = 0,

F[l,n— K] =t*[n - K],

which gives us our result. That is, in (6-18), we see that the squared ¢ statistic (i.e., the
F statistic) is computed using the change in the R?. By interpreting the preceding as
the result of removing z from the regression, we see that we have proved a result for the
case of testing whether a single slope is zero. But the preceding result is general. The test
statistic for a single linear restriction is the square of the ¢ ratio in (6-8). By this construc-
tion, we see that for a single restriction, F'is a measure of the loss of fit that results from
imposing that restriction. To obtain this result, we will proceed to the general case of
J linear restrictions, which will include one restriction as a special case.

The fit of the restricted least squares coefficients cannot be better than that of the
unrestricted solution. Let e, equal y — Xb,. Then, using a familiar device,

e, =y— Xb—X(b, —b)=e—X(b, —b).
The new sum of squared deviations is

ee,=¢ee+ (b, —b)X'X(b,—b) > e
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(The middle term in the expression involves X'e, which is zero.) The loss of fit is
e.e, —e'e = (Rb - q[RX'X)'R]7'(Rb — q). (6-19)

This expression appears in the numerator of the F statistic in (6-7). Inserting the
remaining parts, we obtain

(ele. —e'e)/]

fln =Kl = —%

(6-20)

Finally, by dividing both numerator and denominator of F by ¥;(y; — y)?, we obtain the
general result:

2 2

Flin-K|= BRI (6-21)
(1-R»)/(n—K)

This form has some intuitive appeal in that the difference in the fits of the two models is

directly incorporated in the test statistic. As an example of this approach, consider the

earlier joint test that all of the slopes in the model are zero. This is the overall F ratio

discussed in Section 4.7.4 (4-15), where R? = 0.

For imposing a set of exclusion restrictions such as g; = 0 for one or more coeffi-
cients, the obvious approach is simply to omit the variables from the regression and base
the test on the sums of squared residuals for the restricted and unrestricted regressions.
The F statistic for testing the hypothesis that a subset, say ,, of the coefficients are
all zero is constructed using R = (0:1), ¢ =0, and J = K, = the number of elements in
B. The matrix R(X’X)~'R’ is the K, x K; lower right block of the full inverse matrix.
Using our earlier resuits for partitioned inverses and the results of Section 3.3, we have

RX'X)"'R’ = (X;M;X;)"!
and
Rb — q= bz.

Inserting these in (6-19) gives the loss of fit that results when we drop a subset of the
variables from the regression:

e.e. —e'e = b X M Xoh,.

The procedure for computing the appropriate F statistic amounts simply to comparing
the sums of squared deviations from the “short™ and “long” regressions, which we saw
earlier.

Example 6.2 Production Function
The data in Appendix Table F6.1 have been used in several studies of production functions.’
Least squares regression of log output (value added) on a constant and the logs of labor and
capital produce the estimates of a Cobb-Douglas production function shown in Table 6.2.
We will construct several hypothesis tests based on these results. A generalization of the

3The data are statewide observations on SIC 33, the primary metals industry. They were originally constructed
by Hildebrand and Liu (1957) and have subsequently been used by a number of authors, notably Aigner,
Lovell, and Schmidt (1977). The 28th data point used in the original study is incomplete; we have used only
the remaining 27.
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Translog

103

Cobb-Douglas

Sum of squared residuals 0.67993 0.85163
Standard error of regression 0.17994 0.18840
R-squared 0.95486 0.94346
Adjusted R-squared 0.94411 0.93875
Number of observations 27 27
Standard Standard

Variable Coefficient Error t Ratio Coefficient Error t Ratio
Constant 0.944196 2911 0.324 1.171 0.3268 3.583
InL 3.61363 1.548 2.334 0.6030 0.1260 4,787
In K —1.89311 1.016 —1.863 . 0.3757 0.0853 4.402
% In® L —0.96406 0.7074 —1.363
in* K 0.08529 0.2926 0.291
InLxInK 0.31239 0.4389 0.712
Estimated Covariance Matrix for Translog (Cobb-Douglas) Coefficient Estimates

Constant InL InK %lnzL %InzK InLinK
Constant 8.472

(0.1068)
InL —2.388 2.397

(—0.01984) (0.01586)

InK -0.3313 —-1.231 1.033

(0.00189) (—-00961) (0.00728)
%lnzL —0.08760 -0.6658 0.5231 0.5004
%lnzK 0.2332 0.03477 0.02637 0.1467 0.08562
InLInK 0.3635 0.1831 —0.2255 —0.2880 -0.1160 0.1927

Cobb~Douglas model is the translog model,® which is
INY =By + B2InL + BsINK + Ba(3In° L) + Bs (3 IN*K) + BsInLInK +&.

As we shall analyze further in Chapter 14, this model differs from the Cobb-Douglas model
in that it relaxes the Cobb-Douglas’s assumption of a unitary elasticity of substitution. The
Cobb-Douglas model is obtained by the restriction 8, = B85 = Bs = 0. The results for the
two regressions are given in Table 6.2. The F statistic for the hypothesis of a Cobb-Douglas
model is

(0.85163 — 0.67993) /3
0.67993/21
The critical value from the F table is 3.07, so we would not reject the hypothesis that a
Cobb-Douglas model is appropriate.
The hypothesis of constant returns to scale is often tested in studies of production. This

hypothesis is equivalent to a restriction that the two coefficients of the Cobb-Douglas pro-
duction function sum to 1. For the preceding data,

(0.6030 + 0.3757 — 1)2
0.01586 + 0.00728 — 2(0.00961)

F[3,21] = —1.768.

F[1,24] = =0.1157,

$Berndt and Christensen (1973). See Example 2.5 for discussion.
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which is substantially less than the critical value given earlier. We would not reject the hypoth-
esis; the data are consistent with the hypothesis of constant returns to scale. The equivalent
test for the translog model would be B + 83 = 1 and B4 + Bs + 286 = 0. The F statistic with
2 and 21 degrees of freedom is 1.8891, which is less than the critical value of 3.49. Once
again, the hypothesis is not rejected.

In most cases encountered in practice, it is possible to incorporate the restrictions of
a hypothesis directly on the regression and estimate a restricted model.” For example, to
impose the constraint 8, = 1 on the Cobb-Douglas model, we would write

INnY=3+10InL +83InK +¢
or
InY —InL =81+ B3InK +e¢.

Thus, the restricted model is estimated by regressing InY — InL on a constant and In K.
Some care is needed if this regression is to be used to compute an F statistic. If the F statis-
tic is computed using the sum of squared residuals [see (6-20)], then no problem will arise.
If (6-21) is used instead, however, then it may be necessary to account for the restricted
regression having a different dependent variable from the unrestricted one. In the preced-
ing regression, the dependent variable in the unrestricted regression is In Y, whereas in the
restricted regression, it is In Y — In L. The R? from the restricted regression is only 0.26979,
which would imply an F statistic of 285.96, whereas the correct value is 9.375. If we compute
the appropriate R? using the correct denominator, however, then its value is 0.94339 and the
correct F value results.

Note that the coefficient on In K is negative in the translog model. We might conclude that
the estimated output elasticity with respect to capital now has the wrong sign. This conclusion
would be incorrect, however; in the translog model, the capital elasticity of output is

dinY
dinK

=ps+PsINK +psInL.

If we insert the coefficient estimates and the mean values for In K and In L (not the logs of
the means) of 7.44592 and 5.7637, respectively, then the result is 0.5425, which is quite in
line with our expectations and is fairly close to the value of 0.3757 obtained for the Cobb-
Douglas model. The estimated standard error for this linear combination of the least squares
estimates is computed as the square root of

Est. Var[bs + bs INK + bgIn L] = w’'(Est. Varb)) w,

where -
w=(0,0,1,0,InK,InL)’

and b is the full 6 x 1 least squares coefficient vector. This value is 0.1122, which is reasonably
close to the earlier estimate of 0.0853.

6.4 NONNORMAL DISTURBANCES
AND LARGE SAMPLE TESTS

The distributions of the F,t, and chi-squared statistics that we used in the previous section
rely on the assumption of normally distributed disturbances. Without this assumption,

"This case is not true when the restrictions are nonlinear. We consider this issue in Chapter 9.
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the exact distributions of these statistics depend on the data and the parameters and
are not F, ¢, and chi-squared. At least at first blush, it would seem that we need either
a new set of critical values for the tests or perhaps a new set of test statistics. In this
section, we will examine results that will generalize the familiar procedures. These
large-sample results suggest that although the usual 7 and F statistics are still usable,
in the more general case without the special assumption of normality, they are viewed
as approximations whose quality improves as the sample size increases. By using the
results of Section D.3 (on asymptotic distributions) and some large-sample results for
the least squares estimator, we can construct a set of usable inference procedures based
on already familiar computations.

Assuming the data are well behaved, the asymprotic distribution of the least squares
coefficient estimator, b, is given by

2

b2 N[ﬂ, %Q‘l} where Q = phm< X};X) (6-22)

The interpretation is that, absent normality of e, as the sample size, n, grows, the normal
distribution becomes an increasingly better approximation to the true, though at this
point unknown, distribution of b. As n increases, the distribution of ./n(b— 8) converges
exactly to a normal distribution, which is how we obtain the finite sample approximation
above. This result is based on the central limit theorem and does not require normally
distributed disturbances. The second result we will need concerns the estimator of o2
plim s? = 62, where s® = e'e/(n — K).

With these in place, we can obtain some large-sample results for our test statistics that
suggest how to proceed in a finite sample with nonnormal disturbances.

The sample statistic for testing the hypothesis that one of the coefficients, g equals
a particular value, 8 is

_ V= 8)
52(X'X/”);/:

(Note that two occurrences of /n cancel to produce our familiar result.) Under the
null hypothesis, with normally distributed disturbances, # is exactly distributed as ¢ with
n — K degrees of freedom. [See Theorem 4.4 and (4-13).] The exact distribution of this
statistic is unknown, however, if ¢ is not normally distributed. From the results above,
we find that the denominator of f; converges to vV o2Qy;. Hence, if #; has a limiting
distribution, then it is the same as that of the statistic that has this latter quantity in the
denominator. That is, the large-sample distribution of # is the same as that of

V(b — £)
Vo Qi
12 . o
But 7, = (be— E [bi])/(Asy. Var[b]) " from the asymptotic normal distribution (under
the hypothesis gx = 8Y7), so it follows that 7, has a standard normal asymptotic distri-

bution, and this result is the large-sample distribution of our ¢ statistic. Thus, as a large-
sample approximation, we will use the standard normal distribution to approximate

T =
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the true distribution of the test statistic #; and use the critical values from the standard
normal distribution for testing hypotheses.

The result in the preceding paragraph is valid only in large samples. For moderately
sized samples, it provides only a suggestion that the ¢ distribution may be a reasonable
approximation. The appropriate critical values only converge to those from the standard
normal, and generally from above, although we cannot be sure of this. In the interest
of conservatism—that is, in controlling the probability of a type I error—one should
generally use the critical value from the ¢ distribution even in the absence of normality.
Consider, for example, using the standard normal critical value of 1.96 for a two-tailed
test of a hypothesis based on 25 degrees of freedom. The nominal size of this test is
0.05. The actual size of the test, however, is the true, but unknown, probability that
|tx] > 1.96, which is 0.0612 if the ¢[25] distribution is correct, and some other value if
the disturbances are not normally distributed. The end result is that the standard -test
retains a large sample validity. Little can be said about the true size of a test based on
the ¢ distribution unless one makes some other equally narrow assumption about ¢, but
the ¢ distribution is generally used as a reliable approximation.

We will use the same approach to analyze the F statistic for testing a set of J
linear restrictions. Step 1 will be to show that with normally distributed disturbances,
JF converges to a chi-squared variable as the sample size increases. We will then show
that this result is actually independent of the normality of the disturbances; it relies on
the central limit theorem. Finally, we consider, as above, the appropriate critical values
to use for this test statistic, which only has large sample validity.

The F statistic for testing the validity of J linear restrictions, R —q = 0, is given in
(6-6). With normally distributed disturbances and under the null hypothesis, the exact
distribution of this statistic is F[.J, # — K|. To see how F behaves more generally, divide

~ the numerator and denominator in (6-6) by 0% and rearrange the fraction slightly, so

_ (Rb—¢){R[e>XX)"'JR'} " (Rb —g)

d J(s2/c?)

(6-23)

Since plim s> = 0?2, and plim(X’X/n) = Q, the denominator of F converges to J and
the bracketed term in the numerator will behave the same as (02/ mRQ'R’. Hence,
regardless of what this distribution is, if F has a limiting distribution, then it is the same
as the limiting distribution of

W = %(Rb - 9'[R(e*/mQ 'R’ '(Rb — @)

1 _
= 7(Rb — q)'{ Asy. Var[Rb — q]} "(Rb — g).

This expression is (1/J) times a Wald statistic, based on the asymptotic distribution. The

large-sample distribution of W* will be that of (1/J) times a chi-squared with J degrees

of freedom. It follows that with normally distributed disturbances, /F converges to a chi-

squared variate with J degrees of freedom. The proof is instructive. [See White (2001,
-.9.76).]
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THEOREM 6.1 Limiting Distribution of the Wald Statistic
If ab — B) —5 N[0.62Q "] and if Hy: RB — q = 0 is true, then
W = (Rb — q)'{Rs’>(X'X) 'R’} }(Rb — q) = JF -4 »?[J].
Proof:  Since R is a matrix of constants and R = q,
VAR(b - B) = \/a(Rb — q) > N[0, R(-*Q )R], )
For convenience, write this equation as
z-% N[0, P]. )

In Section A.6.11, we define the inverse square root of a positive definite matrix
P as another matrix, say T such that T> = P~ and denote T as P~1/2. Let T be
the inverse square root of P. Then, by the same reasoning as in (1) and (2),

if 2% N[0, P], then P~12z %5 NJ0, P12pP 12 = N[0,T].  (3)

We now invoke Theorem D.21 for the limiting distribution of a function of a
random variable. The sum of squares of uncorrelated (i.e., independent) standard
normal variables is distributed as chi-squared. Thus, the limiting distribution of

(P~ V2zy (P~ 2) = P12 % 42 (). @)
Reassembling the parts from before, we have shown that the limiting distribution
of

n(Rb — g)'[R(o*Q HR'] ' (Rb — ) ®)

is chi-squared, with J degrees of freedom. Note the similarity of this result to the
results of Section B.11.6. Finally, if

1 _1
plim s° <—X'X> =0’Q7!, (6)
n
then the statistic obtained by replacing 0>Q " by s*>(X'X/n)~! in (5) has the same

limiting distribution. The ns cancel, and we are left with the same Wald statistic
we looked at before. This step completes the proof.

A

The appropriate critical values for the F test of the restrictions R — q =0 con-
verge from above to 1/J times those for a chi-squared test based on the Wald statistic
(see the Appendix tables). For example, for testing J = 5 restrictions, the critical value
from the chi-squared table (Appendix Table G.4) for 95 percent significance is 11.07. The
critical values from the F table (Appendix Table G.5) are 3.33 =16.65/5 forn — K =10,
2.60=13.00/5 forn — K=25,2.40=12.00/5forn — K=50,2.31=11.55/5forn— K =
100, and 2.214 =11.07/5 for large n — K. Thus, with normally distributed disturbances,
as n gets large, the F test can be carried out by referring JF to the critical values from
the chi-squared table.



108 CHAPTER 6 4 Inference and Prediction

The crucial result for our purposes here is that the distribution of the Wald statistic is
built up from the distribution of b, which is asymptotically normal even without normally
distributed disturbances. The implication is that an appropriate large sample test statistic
is chi-squared = JF. Once again, this implication relies on the central limit theorem, not
on normally distributed disturbances. Now, what is the appropriate approach for a small
or moderately sized sample? As we saw earlier, the critical values for the F distribution
converge from above to (1/J) times those for the preceding chi-squared distribution.
As before, one cannot say that this will always be true in every case for every possible
configuration of the data and parameters. Without some special configuration of the
data and parameters, however, one, can expect it to occur generally. The implication is
that absent some additional firm characterization of the model, the F statistic, with the
critical values from the F table, remains a conservative approach that becomes more
accurate as the sample size increases.

Exercise 7 at the end of this chapter suggests another approach to testing that has
validity in large samples, a Lagrange multiplier test. The vector of Lagrange multipliers
in (6-14) is [R(X’X)'R’]"}(Rb — q), that is, a multiple of the least squares discrepancy
vector. In principle, a test of the hypothesis that A, equals zero should be equivalent to
a test of the null hypothesis. Since the leading matrix has full rank, this can only equal
zero if the discrepancy equals zero. A Wald test of the hypothesis that &, = 0 is indeed
a valid way to proceed. The large sample distribution of the Wald statistic would be
chi-squared with J degrees of freedom. (The procedure is considered in Exercise 7.) For
a set of exclusion restrictions, 8, = 0, there is a simple way to carry out this test. The
chi-squared statistic, in this case with K, degrees of freedom can be computed as nR> in
the regression of e, (the residuals in the short regression) on the full set of independent
variables. '

6.5 TESTING NONLINEAR RESTRICTIONS

The preceding discussion has relied heavily on the linearity of the regression model.
When we analyze nonlinear functions of the parameters and nonlinear regression
models, most of these exact distributional results no longer hold.

The general problem s that of testing a hypothesis that involves a nonlinear function
of the regression coefficients: :

Hy:c(B) =q.

We shall look first at the case of a single restriction. The more general one, in which
¢(B) = qis aset of restrictions, is a simple extension. The counterpart to the test statistic
we used earlier would be :

cB)—q

" estimated standard error

(6-29)

or its square, which in the preceding were distributed as ¢t[n — K] and F[1,n — K],
respectively. The discrepancy in the numerator presents no difficulty. Obtaining an
estimate of the sampling variance of cB) - g, however, involves the variance of a
nonlinear function of g.
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The results we need for this computation are presented in Sections B.10.3 and D.3.1.
A linear Taylor series approximation to ¢(f) around the true parameter vector § is

/

c(B)~c(B)+ (%) BB (6-25)
We must rely on consistency rather than unbiasedness here, since, in general, the ex-
pected value of a nonlinear function is not equal to the function of the expected value.
If plim 8 = B. then we are justified in using ¢(B) as an estimate of c¢(B). (The rele-
vant result is the Slutsky theorem.) Assuming that our use of this approximation is
appropriate, the variance of the nonlinear function is approximately equal to the vari-
ance of the right-hand side, which is, then,

Var[e(f)] ~ (%%”) Var[B](a;(:) ) (6-26)

The derivatives in the expression for the variance are functions of the unknown param-
eters. Since these are being estimated, we use our sample estimates in computing the
derivatives. To estimate the variance of the estimator, we can use s*(X’X)~!. Finally, we
rely on Theorem D.2.2 in Section D.3.1 and use the standard normal distribution instead
of the ¢ distribution for the test statistic. Using g(ﬁ) to estimate g(B) = dc(B)/3B, we
can now test a hypothesis in the same fashion we did earlier.

Example 6.3 A Long-Run Marginal Propensity to Consume
A consumption function that has different short- and long-run marginal propensities to con-
sume can be written in the form

NCi=a+gInYi+yInCi_1 + &,

which is a distributed lag model. In this model, the short-run marginal propensity to consume
(MPC) (elasticity, since the variables are in logs) is 8, and the long-run MPC is § = 8/(1 — y).
Consider testing the hypothesis that § = 1.

Quarterly data on aggregate U.S. consumption and disposable personal income for the
years 1950 to 2000 are given in Appendix Table F5.1. The estimated equation based on these
datais .

InC; = 0.003142 + 0.07495InY; +0.9246InC;_; + &, R?=0.999712, s=0.00874
(0.01055) (0.02873) (0.02859)

Estimated standard errors are shown in parentheses. We will also require Est.Asy. Cov[b, c] =
—0.0003298. The estimate of the long-run MPC is d = b/(1 — ¢) = 0.07495/(1 — 0.9246) =
0.99403. To compute the estimated variance of d, we will require

9 1
ao=29__1 _ 13200, gc=a—d b

=— = =-—— — =13.1834.
b 1-c¢ ac  (1-¢? 13.183

The estimated asymptotic variance of d is

Est.Asy. Var[d] = g/ Est.Asy. Var[b] + g2Est.Asy. Var[c] + 2g,g.Est.Asy. Covib, c]
= 13.2626? x 0.02873% + 13.1834% x 0.02859>
+2(13.2626)(13.1834)(—0.0003298) = 0.17192.
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The square root is 0.41464. To test the hypothesis that the long-run MPC is greater than or
equal to 1, we would use

0.99403 -1

= T0ataea - 00144
Because we are using a large sample approximation, we refer to a standard normal table
instead of the t distribution. The hypothesis that y = 1 is not rejected.

You may have noticed that we could have tested this hypothesis with a linear restriction
instead; if§ =1,theng =1—y,0or 8+ y = 1. The estimateisq = b+c—1 = —0.00045. The
estimated standard error of this linear function is [0.028732 +0.02859? — 2(0.0003298)]"/? =
0.03136. The t ratio for this test is —0.01435 which is the same as before. Since the sample
used here is fairly large, this is to be expected. However, there is nothing in the computations
that assures this outcome. In a smaller sample, we might have obtained a different answer.
For example, using the last 11 years of the data, the t statistics for the two hypotheses are
7.652 and 5.681. The Wald test is not invariant to how the hypothesis is formulated. In a
borderline case, we could have reached a different conclusion. This lack of invariance does
not occur with the likelihood ratio or Lagrange multiplier tests discussed in Chapter 17. On
the other hand, both of these tests require an assumption of normality, whereas the Wald
statistic does not. This illustrates one of the trade-offs between a more detailed specification
and the power of the test procedures that are implied.

The generalization to more than one function of the parameters proceeds along
similar lines. Let ¢(8) be a set of J functions of the estlmated parameter vector and let
the J x K matrix of derivatives of c(ﬂ) be

. dc(B
G= 2B (6-27)
ap
The estimate of the asymptotic covariance matrix of these functions is
Est.Asy. Var[¢] = G{Est.Asy. Var[8]} G’ (6-28)

The jth row of G is K derivatives of ¢; with respect to the K elements of 8. For example,
the covariance matrix for estimates of the short- and long-run marginal propensities to
consume would be obtained using

0 1 0

C=lo 11—y pra-y2

The statistic for testing the J hypotheses ¢(8) = q is
= (¢ — q)'{Est. Asy. Var[é]}_l(é —q). (6-29)

In large samples, W has a chi-squared distribution with degrees of freedom equal to the
number of restrictions. Note that for a single restriction, this value is the square of the
statistic in (6-24).
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6.6 PREDICTION

After the estimation of parameters, a common use of regression is for prediction.?
Suppose that we wish to predict the value of y° associated with a regressor vector x°.
This value would be

yO — Xﬂ/ﬂ 4 60.
It follows from the Gauss—Markov theorem that
90 =x"pb (6-30)
is the minimum variance linear unbiased estimator of E[y°|x°]. The forecast error is
eO — yO _ )A)O — (ﬂ . b)/xo +80.
The prediction variance to be applied to this estimate is
Var[e[X, x’] = o2 + Var[(8 — b)'x"X, x| = 0% + x"[¢2(X'X) ! ]x". (6-31)
If the regression contains a constant term, then an equivalent expression is
1 Kolk-1
0 2 0_ 23(,0_ = Oy jk
Varl'] =0 |14 43 3 (4] = %) (1 - 5) @ MZ)!
j=1 k=1
where Z is the K — 1 columns of X not including the constant. This result shows that
the width of the interval depends on the distance of the elements of x° from the center
of the data. Intuitively, this idea makes sense; the farther the forecasted point is from
the center of our experience, the greater is the degree of uncertainty.

The prediction variance can be estimated by using s? in place of 0%. A confidence
interval for y® would be formed using a

prediction interval = 510 6 se(e?).

Figure 6.1 shows the effect for the bivariate case. Note that the prediction variance
is composed of three parts. The second and third become progressively smaller as we
accumulate more data (i.e., as n increases). But the first term o2 is constant, which
implies that no matter how much data we have, we can never predict perfectly.

Example 6.4 Prediction for Investment
Suppose that we wish to “predict” the first quarter 2001 value of real investment. The
average rate (secondary market) for the 90 day T-bill was 4.48% (down from 6.03 at
the end of 2000); real GDP was 9316.8; the CPI_U was 528.0 and the time trend would equal
204. (We dropped one observation to compute the rate of inflation. Data were
obtained from www.economagic.com.) The rate of inflation on a yearly basis would be

81t is necessary at this point to make a largely semantic distinction between “prediction” and “forecasting.” We
will use the term “prediction™ to mean using the regression model to compute fitted values of the dependent
variable, either within the sample or for observations outside the sample. The same set of results will apply
to cross sections, time series, or panels. These are the methods considered in this section. It is helpful at this
point to reserve the term “forecasting” for usage of the time series models discussed in Chapter 20. One of
the distinguishing features of the models in that setting will be the explicit role of “time” and the presence of
lagged variables and disturbances in the equations and correlation of variables with past values.
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y

100% x 4 x In(528.0/521.1) = 5.26%. The data vector for predicting In/.g91.1 would be
x® =[1,4.48,5.26,9.1396, 204]. Using the regression results in Example 6.1,

x%b = [1, 4.48, 5.26, 9.1396, 204] x [-9.1345, —0.008601, 0.003308, 1.9302, —0.005659]'
= 7.3312.

The estimated variance of this prediction is
1 + x¥(X'X)~'x°] = 0.0076912. (6-32)

The square root, 0.087699, gives the prediction standard deviation. Using this value, we
obtain the prediction interval:

7.3312 £ 1.96(0.087699) = (7.1593, 7.5031).

The yearly rate of real investment in the first quarter of 2001 was 1721. The log is 7.4507, so
our forecast interval contains the actual value.

We have forecasted the log of real investment with our regression model. If it is desired to
forecast the level, the natural estimator would be [ = exp(In /). Assuming that the estimator,
itself, is at least asymptotically normally distributed, this should systematically underestimate
the level by a factor of exp(52/2) based on the mean of the lognormal distribution. [See
Wooldridge (2000, p. 203) and Section B.4.4.] It remains to determine what to use for 62. In
(6-32), the second part of the expression will vanish in large samples, leaving (as Wooldridge
suggests) s> = 0.007427.° Using this scaling, we obtain a prediction of 1532.9, which is
still 11 percent below the actual value. Evidently, this model based on an extremely long
time series does not do a very good job of predicting at the end of the sample period. One
might surmise various reasons, including some related to the model specification that we will
address in Chapter 20, but as a first guess, it seems optimistic to apply an equation this simple
to more than 50 years of data while expecting the underlying structure to be unchanging

9Wooldridge suggests an alternative not necessarily based on an assumption of normality. Use as the scale
factor the single coefficient in a within sample regression of y; on the exponents of the fitted logs.
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through the entire period. To investigate this possibility, we redid all the preceding calculations
using only the data from 1990 to 2000 for the estimation. The prediction for the level of
investment in 2001.1 is now 1885.2 (using the suggested scaling), which is an overestimate
of 9.54 percent. But, this is more easily explained. The first quarter of 2001 began the first
recession in the U.S. economy in nearly 10 years, and one of the early symptoms of a
recession is a rapid decline in business investment.

All the preceding assumes that x° is either known with certainty, ex post, or fore-
casted perfectly. If x” must, itself, be forecasted (an ex ante forecast), then the formula
for the forecast variance in (6-31) would have to be modified to include the variation
in x’, which greatly complicates the computation. Most authors view it as simply in-
tractable. Beginning with Feldstein (1971), derivation of firm analytical results for the
correct forecast variance for this case remain to be derived except for simple special
cases. The one qualitative result that seems certain is that (6-31) will understate the
true variance. McCullough (1996) presents an alternative approach to computing ap-
propriate forecast standard errors based on the method of bootstrapping. (See the end
of Section 16.3.2.)

Various measures have been proposed for assessing the predictive accuracy of fore-
casting models.'” Most of these measures are designed to evaluate ex post forecasts,
that is, forecasts for which the independent variables do not themselves have to be fore-
casted. Two measures that are based on the residuals from the forecasts are the root

mean squared error
1 532
RMSE =, [ Z(yi )
i

1 o
MAE=$Z:y,-—y,-|,

and the mean absolute error

where n® is the number of periods being forecasted. (Note that both of these as well as
the measures below, are backward looking in that they are computed using the observed
data on the independent variable.) These statistics have an obvious scaling problem—
multiplying values of the dependent variable by any scalar multiplies the measure by that
scalar as well. Several measures that are scale free are based on the Theil U statistic:!!

_ A/ i = 3)?
U= 5 .
A/nN3; y;
This measure is related to R? but is not bounded by zero and one. Large values indicate

a poor forecasting performance. An alternative is to compute the measure in terms of
the changes in y:

Ur = (1/n93" (Ayi — AP;)*
o A/ny(Ay)?

10See Theil (1961) and Fair (1984).
UTheil (1961).
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where Ay; = y;—y;—1and Ay; = 9,—y;_1, 01, in percentage changes, Ay; = (Vi—yi—1)/yi—1
and A9; = (¥, —yi—1)/yi—1. These measures will reflect the model’s ability to track turning
points in the data.

6.7 SUMMARY AND CONCLUSIONS

This chapter has focused on two uses of the linear regression model, hypothesis testing
and basic prediction. The central result for testing hypotheses is the F statistic. The F
ratio can be produced in two equivalent ways; first, by measuring the extent to which
the unrestricted least squares estimate differs from what a hypothesis would predict
and second, by measuring the loss of fit that results from assuming that a hypothesis is
correct. We then extended the F statistic to more general settings by examining its large
sample properties, which allow us to discard the assumption of normally distributed
disturbances and by extending it to nonlinear restrictions.

Key Terms and Concepts

o Alternative hypothesis ¢ Nested models » Prediction variance
e Distributed lag ¢ Nonlinear restriction  Restricted least squares
¢ Discrepancy vector ¢ Nonnested models ¢ Root mean squared error
¢ Exclusion restrictions » Noninvariance of Wald test  « Testable implications
¢ Ex post forecast ¢ Nonnormality e Theil U statistic
e Lagrange multiplier test ¢ Null hypothesis * Wald criterion
* Limiting distribution ¢ Parameter space ‘
e Linear restrictions ¢ Prediction interval
Exercises

1. A multiple regression of y on a constant x; and x, produces the following results:
9 =44 0.4x + 0.9x;, R* = 8/60, ¢'e = 520, n = 29,

29 0 0
XX=[0 50 10
0 10 80

Test the hypothesis that the two slopes sum to 1.
2. Using the results in Exercise 1, test the hypothesis that the slope on x; is 0 by running
the restricted regression and comparing the two sums of squared deviations.
3. The regression model to be analyzed is y = Xi18; + Xu8, + €, where X; and X;
have Kj and K, columns, respectively. The restriction is 8, = 0.
a. Using (6-14), prove that the restricted estimator is simply [by,, 0], where by, is
the least squares coefficient vector in the regression of y on Xj.
b. Prove that if the restriction is 8, = 8 for a nonzero B9, then the restricted
estimator of B, is bi. = X/ X)X/ (y — X289).
4. The expression for the restricted coefficient vector in (6-14) may be written in the
form b, =[I — CR]b + w, where w does not involve b. What is C? Show that the
covariance matrix of the restricted least squares estimator is

o?(X'X)™! - o 2X'X) 'R[RX'X) R IRX'X) !
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11.

12.
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and that this matrix may be written as

Var[b | X]{[Var(b|X)]™' — R’[Var(Rb) | X] 'R} Var[b | X].

. Prove the result that the restricted least squares estimator never has a larger

covariance matrix than the unrestricted least squares estimator.

Prove the result that the R* associated with a restricted least squares estimator
is never larger than that associated with the unrestricted least squares estimator.
Conclude that imposing restrictions never improves the fit of the regression.

An alternative way to test the hypothesis R — q = 0 is to use a Wald test of the
hypothesis that A, = 0, where A, is defined in (6-14). Prove that

XZ = ).;{EstVar[)‘*]}Al* = (n — K) l:ee*,e* — ]_:| .
€

Note that the fraction in brackets is the ratio of two estimators of 2. By virtue
of (6-19) and the preceding discussion, we know that this ratio is greater than 1.
Finally, prove that this test statistic is equivalent to JF, where J is the number of
restrictions being tested and Fis the conventional Fstatistic given in (6-6). Formally,
the Lagrange multiplier test requires that the variance estimator be based on the
restricted sum of squares, not the unrestricted. Then, the test statistic would be
LM =nJ/[(n — K)/F + J]. See Godfrey (1988).

Use the test statistic defined in Exercise 7 to test the hypothesis in Exercise 1.
Using the data and model of Example 2.3, carry out a test of the hypothesis that
the three aggregate price indices are not significant determinants of the demand
for gasoline.

The full model of Example 2.3 may be written in logarithmic terms as

InG/pop =a + B,In P+ B8,InY+ yucln Py + e In Py + YpeIn By
+pyear+34In Py+38,In P, + 8 1n P, + &.

Consider the hypothesis that the microelasticities are a constant proportion of the
elasticity with respect to their corresponding aggregate. Thus, for some positive 6
(presumably between 0 and 1), y,,c = 884, Yue = 684, Ypr = 05;.
The first two imply the simple linear restriction y,,. = ... By taking ratios, the

first (or second) and third imply the nonlinear restriction

1z 8a

=== OF  Vuebs — thad =0.

Vpt Js
a. Describe in detail how you would test the validity of the restriction.
b. Using the gasoline market data in Table F2.2 , test the restrictions separately and

jointly.
Prove that under the hypothesis that R8 = q, the estimator
E (y — Xb.)'(y — Xb,)
* n—K+J ’

where J is the number of restrictions, is unbiased for 2.

Show that in the multiple regression of y on a constant, x; and x, while imposing
the restriction B; 4§, = 1 leads to the regression of y — x; on a constant and x, — x;.
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FUNCTIONAL FORM AND
STRUCTURAL CHANGE

—VY I

INTRODUCTION

In this chapter, we are concerned with the functional form of the regression model. Many
different types of functions are “linear” by the definition considered in Section 2.3.1. By
using different transformations of the dependent and independent variables, dummy
variables and different arrangements of functions of variables, a wide variety of models
can be constructed that are all estimable by linear least squares. Section 7.2 considers
using binary variables to accommodate nonlinearities in the model. Section 7.3 broadens
the class of models that are linear in the parameters. Sections 7.4 and 7.5 then examine
the issue of specifying and testing for change in the underlying model that generates the
data, under the heading of structural change.

7.2 USING BINARY VARIABLES

116

One of the most useful devices in regression analysis is the binary, or dummy variable.
A dummy variable takes the value one for some observations to indicate the pres-
ence of an effect or membership in a group and zero for the remaining observations.
Binary variables are a convenient means of building discrete shifts of the function into
a regression model.

7.2.1 BINARY VARIABLES IN REGRESSION

Dummy variables are usually used in regression equations that also contain other quan-
titative variables. In the earnings equation in Example 4.3, we included a variable Kids
to indicate whether there were children in the household under the assumption that for
many married women, this fact is a significant consideration in labor supply behavior.
The results shown in Example 7.1 appear to be consistent with this hypothesis.

Example 7.1 Dummy Variable in an Earnings Equation

Table 7.1 following reproduces the estimated earnings equation in Example 4.3. The variable
Kids is a dummy variable, which equals one if there are children under 18 in the household
and zero otherwise. Since this is a semilog equation, the value of —.35 for the coefficient
is an extremely large effect, that suggests that all other things equal, the earnings of women
with children are nearly a third less than those without. This is a large difference, but one that
would certainly merit closer scrutiny. Whether this effect results from different labor market
effects which affect wages and not hours, or the reverse, remains to be seen. Second, having
chosen a nonrandomly selected sample of those with only positive earnings to begin with, it
Is unclear whether the sampling mechanism has, itself, induced a bias in this coefficient.
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, Estimated Earnings Equatio
In earnings = B\ + B2 age + B3 age® + By education + Bs kids + ¢

Sum of squarcd residuals: 599.4582

Standard error of the regression: 1.19044

R? based on 428 observations 0.040995

Variable Coefficient Standard Error t Ratio
Constant 3.24009 1.7674 1.833
Age 0.20056 0.08386 2.392
Age? —0.0023147 0.00098688 —2.345
Education 0.067472 0.025248 2.672
Kids —0.35119 0.14753 —2.380

In recent applications, researchers in many fields have studied the effects of treat-
ment on some kind of response. Examples include the effect of college on, lifetime
income, sex differences in labor supply behavior as in Example 7.1, and in salary struc-
tures in industries, and in pre- versus postregime shifts in macroeconomic models, to
name but a few. These examples can all be formulated in regression models involving a
single dummy variable:

Yi = X;ﬂ +8d; + &;.

One of the important issues in policy analysis concerns measurement of such treatment
effects when the dummy variable results from an individual participation decision. For
example, in studies of the effect of job training programs on post-training earnings,
the “treatment dummy” might be measuring the latent motivation and initiative of the
participants rather than the effect of the program, itself. We will revisit this subject in
Section 22.4.

Itis common for researchers to include a dummy variable in a regression to account
for something that applies only to a single observation. For example, in time-series
analyses, an occasional study includes a dummy variable that is one only in a single
unusual year, such as the year of a major strike or a major policy event. (See, for
example, the application to the German money demand function in Section 20.6.5.) It
is easy to show (we consider this in the exercises) the very useful implication of this:

A dummy variable that takes the value one only for one observation has the effect of
_deleting-that observation from computation of the least squares slopes and variance
_estimator (but not R-squared).

7.2.2 SEVERAL CATEGORIES

When there are several categories, a set of binary variables is necessary. Correcting
for seasonal factors in macroeconomic data is a common application. We could write a
consumption function for quarterly data as

C=B1+Bx4+8D1+8Dy+8D3 + &,
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where x; is disposable income. Note that only three of the four quarterly dummy vari-
ables are included in the model. If the fourth were included, then the four dummy
variables would sum to one at every observation, which would reproduce the constant
term—a case of perfect multicollinearity. This is known as the dummy variable trap.
Thus, to avoid the dummy variable trap, we drop the dummy variable for the fourth
quarter. (Depending on the application, it might be preferable to have four separate
dummy variables and drop the overall constant.)! Any of the four quarters (or 12
months) can be used as the base period.

The preceding is a means of deseasonalizing the data. Consider the alternative
formulation:

C=Bx+86D1+8Dp+83D3+ 84Dy + . (7-1)

Using the results from Chapter 3 on partitioned regression, we know that the preceding
multiple regression is equivalent to first regressing C and x on the four dummy variables
and then using the residuals from these regressions in the subsequent regression of
deseasonalized consumption on deseasonalized income. Clearly, deseasonalizing in this
fashion prior to computing the simple regression of consumption on income produces
the same coefficient on income (and the same vector of residuals) as including the set
of dummy variables in the regression.

7.2.3 SEVERAL GROUPINGS

The case in which several sets of dummy variables are needed is much the same as
those we have already considered, with one important exception. Consider a model of
statewide per capita expenditure on education y as a function of statewide per capita
income x. Suppose that we have observations on all n = 50 states for 7 = 10 years. A
regression model that allows the expected expenditure to change over time as well as
across states would be

Yie =+ Bxi; +8; +6; + &1 (7-2)

As before, it is necessary to drop one of the variables in each set of dummy variables to
avoid the dummy variable trap. For our example, if a total of 50 state dummies and 10
time dummies is retained, a problem of “perfect multicollinearity” remains; the sums
of the 50 state dummies and the 10 time dummies are the same, that is, 1. One of the
variables in each of the sets (or the overall constant term and one of the variables in
one of the sets) must be omitted.

Example 7.2 Analysis of Covariance
The data in Appendix Table F7.1 were used in a study of efficiency in production of airline
services in Greene (1997b). The airline industry has been a favorite subject of study [e.g.,
Schmidt and Sickles (1984); Sickles, Good, and Johnson (1986)], partly because of interest in
this rapidly changing market in a period of deregulation and partly because of an abundance
of large, high-quality data sets collected by the (no longer existent) Civil Aeronautics Board.
The original data set consisted of 25 firms observed yearly for 15 years (1970 to 1984), a
“balanced panel.” Several of the firms merged during this period and several others experi-
enced strikes, which reduced the number of complete observations substantially. Omitting
these and others because of missing data on some of the variables left a group of 10 full

ISee Suits (1984) and Greene and Seaks (1991).
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Estimated Year Specific Effects

—

0 5 10 15
Year

observations, from which we have selected six for the examples to follow. We will fit a cost
equation of the form ‘

INCit = B1+ P2 N Q¢ + B31n° Qi + B4 In Pues iy + Bs Loadfactor; ;

14 5
+ Z 0:Dj¢ + Z SiFit+eis.
=1 =1

The dummy variables are D;; which is the year variable and F; ; which is the firm variable. We
have dropped the last one in each group. The estimated model for the full specification is

InC;; = 13.56 + .8866In Q; ; + 0.01261 In? Qi+ +0.1281In Ps; s — 0.8855LF; ;
+ time effects + firm effects.

The year effects display a revealing pattern, as shown in Figure 7.1. This was a period of
rapidly rising fuel prices, so the cost effects are to be expected. Since one year dummy
variable is dropped, the effect shown is relative to this base year (1984).

We are interested in whether the firm effects, the time effects, both, or neither are sta-
tistically significant. Table 7.2 presents the sums of squares from the four regressions. The
F statistic for the hypothesis that there are no firm specific effects is 65.94, which is highly
significant. The statistic for the time effects is only 2.61, which is larger than the critical value

Model Sum of Squares Parameters F Deg.Fr.
Full Model 0.17257 24 —

Time Effects 1.03470 19 65.94 [5,66]
Firm Effects 0.26815 10 2.61 [14, 66]
No Effects 1.27492 5 22.19 [19,66]
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of 1.84, but perhaps less so than Figure 7.1 might have suggested. In the absence of the
year specific dummy variables, the year specific effects are probably largely absorbed by the
price of fuel.

7.2.4 THRESHOLD EFFECTS AND CATEGORICAL VARIABLES

In most applications, we use dummy variables to account for purely qualitative factors,
such as membership in a group, or to represent a particular time period. There are cases,
however, in which the dummy variable(s) represents levels of some underlying factor
that might have been measured directly if this were possible. For example, education
is a case in which we typically observe certain thresholds rather than, say, years of
education. Suppose, for example, that our interest is in a regression of the form

income = By + B, age + effect of education + «.

The data on education might consist of the highest level of education attained, such
as high school (HS), undergraduate (B), master’s (M), or Ph.D. (P). An obviously
unsatisfactory way to proceed is to use a variable E that is O for the first group, 1 for the
second, 2 for the third, and 3 for the fourth. That is, income = 8; + Brage + B3E +¢.
The difficulty with this approach is that it assumes that the increment in income at each
threshold is the same; B; is the difference between income with a Ph.D. and a master’s
and between a master’s and a bachelor’s degree. This is unlikely and unduly restricts
the regression. A more flexible model would use three (or four) binary variables, one
for each level of education. Thus, we would write

income = B + B2 age + g B + 8y M+ 8pP + ¢.

The correspondence between the coefficients and income for a given age is

High school: E[income | age, HS| = 8 + p; age,

Bachelor’s:  Efincome |age, B] = g1 + 8, age + 83,

Masters: E[income | age, M] = B1 + B> age + by,

Ph.D.: E[income |age, P] = 81 + B; age + 8p.
The differences between, say, §p and 8, and between 8y, and 85 are of interest. Obvi-
ously, these are simple to compute. An alternative way to formulate the equation that
reveals these differences directly is to redefine the dummy variables to be 1 if the indi-
vidual has the degree, rather than whether the degree is the highest degree obtained.

Thus, for someone with a Ph.D,, all three binary variables are 1, and so on. By defining
the variables in this fashion, the regression is now

High school: E[income | age, HS| = B + 8; age,
Bachelor’s:  Efincome |age, B] = B; + B; age + 63,
Masters: E[income |age, M] = B; + B, age + 83 + 8u,
Ph.D.: E[income|age, P] = B+ Brage + 85+ 8y + 5p.
Instead of the difference between a Ph.D. and the base case, in this model § p is the

marginal value of the Ph.D. How equations with dummy variables are formulated is a
matter of convenience. All the results can be obtained from a basic equation.
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Income

7.2.5 SPLINE REGRESSION

If one is examining income data for a large cross section of individuals of varying ages
in a population, then certain patterns with regard to some age thresholds will be clearly
evident. In particular, throughout the range of values of age, income will be rising, but the
slope might change at some distinct milestones, for example, at age 18, when the typical
individual graduates from high school, and at age 22, when he or she graduates from
college. The time profile of income for the typical individual in this population might
appear as in Figure 7.2. Based on the discussion in the preceding paragraph, we could
fit such a regression model just by dividing the sample into three subsamples. However,
this would neglect the continuity of the proposed function. The result would appear
more like the dotted figure than the continuous function we had in mind. Restricted
regression and what is known as a spline function can be used to achieve the desired
effect.?
The function we wish to estimate is

E[income | age] = o + g% age if age < 18,
al + plage ifage > 18 and age < 22,
a? + B2 age if age > 22.
The threshold values, 18 and 22, are called knots. Let
d =1 ifage>1t],
d =1 ifage>1,

2 An important reference on this subject is Poirier (1974). An often-cited application appears in Garber and
Poirier (1974). .
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where ¢ = 18 and t; = 22. To combine all three equations, we use
income = B + B age + y1dy + 81dy age + y»dr + 8,d; age + e. (7-3)

This relationship is the dashed function in Figure 7.2. The slopes in the three segments
are 8, B> + 6y, and B, + 8; + 5,. To make the function piecewise continuous, we require
that the segments join at the knots—that is,

B+ Bt =B +yv) + B+ 808

and
Br+v)+ B+ =B+ +y)+ B+ + ).
These are linear restrictions on the coefficients. Collecting terms, the first one is
vit+éit; =0 or y =81 ‘
Doing likewise for the second and inserting these in (7-3), we obtain
income = f; + f, age + 81d) (age — ) + &rdb (age — &) + &.

Constrained least squares estimates are obtainable by multiple regression, using a con-
stant and the variables
x| = age,

x; = age — 18 if age > 18 and 0 otherwise,
and
x3 =age —22 if age > 22 and 0 otherwise.

We can test the hypothesis that the slope of the function is constant with the joint test
of the two restrictions §; = 0 and 8, = 0.

7.3 NONLINEARITY IN THE VARIABLES

It is useful at this point to write the linear regression model in a very general form: Let
zZ=271,2,...,2. be asetof Lindependent variables; let fi, f3,..., fx be K linearly
independent functions of z; let g(v) be an observable function of y; and retain the usual
assumptions about the disturbance. The linear regression model is

g =D+ BbL@+ - +Pxfk@ +e¢
=pix1+ B2+ + Brxg +¢ (7-49)
=x'f+e.

By using logarithms, exponentials, reciprocals, transcendental functions, polynomials,
products, ratios, and so on, this “linear” model can be tailored to any number of
situations.

7.3.1  FUNCTIONAL FORMS

A commonly used form of regression model is the loglinear model,

lny=lna+ZﬂklnXk+8=ﬁ1+Z,3kxk+s.
k k
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In this model, the coefficients are elasticities:

ay X\ dlny _ ‘ .
() (5) = i = )

In the loglinear equation, measured changes are in proportional or percentage terms;
Br measures the percentage change in y associated with a one percent change in xj.
This removes the units of measurement of the variables from consideration in using
the regression model. An alternative approach sometimes taken is to measure the vari-
ables and associated changes in standard deviation units. If the data are “standardized”
before estimation using xj;, = (x;x — Xx)/sx and likewise for y, then the least squares
regression coefficients measure changes in standard deviation units rather than natural
or percentage terms. (Note that the constant term disappears from this regression.) It is
not necessary actually to transform the data to produce these results; multiplying each
least squares coefficient by in the original regression by s,/sx produces the same result.
A hybrid of the linear and loglinear models is the semilog equation

Iny =g+ fox +¢. (7-6)
We used this form in the investment equation in Section 6.2,

Inly =By + B2 (s — Ap)) + B3Ap: + BaIn Y + Bst + &,

where the log of investment is modeled in the levels of the real interest rate, the
price level, and a time trend. In a semilog equation with a time trend such as this
one, dIn I/dt = s is the average rate of growth of /. The estimated value of —.005 in
Table 6.1 suggests that over the full estimation period, after accounting for all other
factors, the average rate of growth of investment was —.5 percent per year.

The coefficients in the semilog model are partial- or semi-elasticities; in (7-6), 8, is
d1n y/dx. This is a natural form for models with dummy variables such as the earnings
equation in Example 7.1. The coefficient on Kids of —.35 suggests that all else equal,
earnings are approximately 35 percent less when there are children in the household.

The quadratic earnings equation in Example 7.1 shows another use of nonlineari-
ties in the variables. Using the results in Example 7.1, we find that for a woman with
12 years of schooling and children in the household, the age-earnings profile appears as
inFigure 7.3. This figure suggests an important question in this framework. It is tempting
to conclude that Figure 7.3 shows the earnings trajectory of a person at different ages,
but that is not what the data provide. The model is based on a cross section, and what it
displays is the earnings of different people of different ages. How this profile relates to
the expected earnings path of one individual is a different, and complicated question.

Another useful formulation of the regression model is one with interaction terms.
For example, a model relating braking distance D to speed S and road wetness W might
be

D=p1+ S+ W+ BsSW +e.
In this model,

IE[D|S. W]

7S =+ BsW
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Earnings Profile by Age
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which implies that the marginal effect of higher speed on braking distance is increased
when the road is wetter (assuming that j, is positive). If it is desired to form confidence
intervals or test hypotheses about these marginal effects, then the necessary standard
error is computed from

Var(BE[D| S, W]

35 ) = Var[B,] + W? Var[B,] + 2W Cov[B,, B.].

and similarly for 9 E[D| S, W]/dW. A value must be inserted for W. The sample mean
is a natural choice, but for some purposes, a specific value, such as an extreme value of
W in this example, might be preferred.

7.3.2 IDENTIFYING NONLINEARITY

If the functional form is not known a priori, then there are a few approaches that may
help at least to identify any nonlinearity and provide some information about it from the
sample. For example, if the suspected nonlinearity is with respect to a single regressor in
the equation, then fitting a quadratic or cubic polynomial rather than a linear function
may capture some of the nonlinearity. By choosing several ranges for the regressor in
question and allowing the slope of the function to be different in each range, a piecewise
linear approximation to the nonlinear function can be fit.

Example 7.3 Functional Form for a Nonlinear Cost Function
In a celebrated study of economies of scale in the U.S. electric power industry, Nerlove (1963)
analyzed the production costs of 145 American electric generating companies. This study
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produced several innovations in microeconometrics. It was among the first major applications
of statistical cost analysis. The theoretical development in Nerlove’s study was the first to
show how the fundamental theory of duality between production and cost functions could be
used to frame an econometric model. Finally, Nerlove employed several useful techniques
to sharpen his basic model.

The focus of the paper was economies of scale, typically modeled as a characteristic of
the production function. He chose a Cobb-Douglas function to model output as a function
of capital, K, labor, L, and fuel, F;

Q = agK s L Ferefi

where Q is output and ¢; embodies the unmeasured differences across firms. The economies
of scale parameter isr = ax + «; + ar. The value one indicates constant returns to scale. in
this study, Nerlove investigated the widely accepted assumption that producers in this indus-
try enjoyed substantial economies of scale. The production model is loglinear, so assuming
that other conditions of the classical regression model are met, the four parameters could be
estimated by least squares. However, he argued that the three factors could not be treated
as exogenous variables. For a firm that optimizes by choosing its factors of production, the
demand for fuel would be F* = F*(Q, Pk, P., Pr) and likewise for labor and capital, so
certainly the assumptions of the classical model are violated.

In the regulatory framework in place at the time, state commissions set rates and firms
met the demand forthcoming at the regulated prices. Thus, it was argued that output (as well
as the factor prices) could be viewed as exogenous to the firm and, based on an argument by
Zellner, Kmenta, and Dreze (1966), Nerlove argued that at equilibrium, the deviation of costs
from the long run optimum would be independent of output. (This has a testable implication
which we will explore in Chapter 14.) Thus, the firm’s objective was cost minimization subject
to the constraint of the production function. This can be formulated as a Lagrangean problem,

MinK,L,FPKK + P L+ PF -}-)»(Q —OloKaKLaLFQF).

The solution to this minimization problem is the three factor demands and the multiplier
(which measures marginal cost). Inserted back into total costs, this produces an (intrinsically
linear) loglinear cost function,

PxK + P.L + PeF =C(Q, Py, P, Pe) =r AQY" Pg</" Pt/T PEF/Tgeil
or

INC =1+ NQ+BxINPec+ A NP+ BeinPe+u (7-7)

where B, = 1/(ax +ap +ar) is now the parameter of interest and 8; = a;/r,j = K,L,F.2
Thus, the duality between production and cost functions has been used to derive the esti-
mating equation from first principles.

A complication remains. The cost parameters must sum to one; gx + 8. + Br = 1, s0
estimation must be done subject to this constraint.* This restriction can be imposed by
regressing IN(C/Pr) on a constant In Q, In(Px/P<) and In(P_/Pr). This first set of results
appears at the top of Table 7.3.

3Readers who attempt to replicate the original study should note that Nerlove used common (base 10) logs
in his calculations, not natural logs. This change creates some numerical differences.

“In the context of the econometric model, the restriction has a testable implication by the definition in
Chapter 6. But, the underlying economics require this restriction—it was used in deriving the cost function.
Thus, it is unclear what is implied by a test of the restriction. Presumably. if the hypothesis of the restriction
is rejected, the analysis should stop at that point, since without the restriction, the cost function is not a
valid representation of the production function. We will encounter this conundrum again in another form in
Chapter 14. Fortunately, in this instance, the hypothesis is not rejected. (It is in the application in Chapter 14.)
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log O log P, — log Pr log Px — log Pr R?

All firms 0.721 0.594 —0.0085 0.952
(0.0174) (0.205) (0.191)

Group 1 0.398 0.641 —0.093 0.512

Group 2 0.668 0.105 0.364 0.635

Group 3 0.931 0.408 0.249 0.571

Group 4 0.915 0.472 0.133 0.871

Group 5 1.045 0.604 —0.295 0.920

Initial estimates of the parameters of the cost function are shown in the top row of
Table 7.3. The hypothesis of constant returns to scale can be firmly rejected. The t ratio
is (0.721 — 1)/0.0174 = —16.03, so we conclude that this estimate is significantly less than
one or, by implication, r is significantly greater than one. Note that the coefficient on the cap-
ital price is negative. In theory, this should equal ax/r, which (unless the marginal product
of capital is negative), should be positive. Nerlove attributed this to measurement error in
the capital price variable. This seems plausible, but it carries with it the implication that the
other coefficients are mismeasured as well. [See (5-31a,b). Christensen and Greene’s (1976)
estimator of this model with these data produced a positive estimate. See Section 14.3.1.]

The striking pattern of the residuals shown in Figure 7.45 and some thought about the
implied form of the production function suggested that something was missing from the
model.? In theory, the estimated model implies a continually declining average cost curve,
which in turn implies persistent economies of scale at all levels of output. This conflicts with
the textbook notion of a U-shaped average cost curve and appears implausible for the data.
Note the three clusters of residuals in the figure. Two approaches were used to analyze the
model.

By sorting the sample into five groups on the basis of output and fitting separate regres-
sions to each group, Nerlove fit a piecewise loglinear model. The results are given in the
lower rows of Table 7.3, where the firms in the successive groups are progressively larger.
The results are persuasive that the (log)-linear cost function is inadequate. The output coef-
ficient that rises toward and then crosses 1.0 is consistent with a U-shaped cost curve as
surmised earlier.

A second approach was to expand the cost function to include a quadratic term in log
output. This approach corresponds to a much more general model and produced the result
given in Table 7.4. Again, a simple t test strongly suggests that increased generality is called
for; t = 0.117/0.012 = 9.75. The output elasticity in this quadratic model is f; + 2yqq 09 Q’
There are economies of scale when this value is less than one and constant returns to scale
when it equals one. Using the two values given in the table (0.151 and 0.117, respectively), we
find that this function does, indeed, produce a U shaped average cost curve with minimum
atlogy, Q = (1 —0.151) /(2 x 0.117) = 3.628, or Q = 4248, which was roughly in the middle
of the range of outputs for Nerlove’'s sample of firms.

5The residuals are created as deviations of predicted total cost from actual, so they do not sum to zero.

6 A Durbin—Watson test of correlation among the residuals (see Section 12.5.1) revealed to the author a
substantial autocorrelation. Although normally used with time series data, the Durbin-Watson statistic and
a test for “autocorrelation” can be a useful tool for determining the appropriate functional form in a cross
sectional model. To use this approach, it is necessary to sort the observations based on a variable of interest
(output). Several clusters of residuals of the same sign suggested a need to reexamine the assumed functional
form.

"Nerlove inadvertently measured economies of scale from this function as 1/(8, + élog Q), where 8, and
8 are the coefficients on log Q and log? Q. The correct expression would have been 1/[3log C/8log Q] =
1/[Bq + 28 log Q}. This slip was periodically rediscovered in several later papers.
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This study was updated by Christensen and Greene (1976). Using the same data but a
more elaborate (translog) functional form and by simultaneously estimating the factor de-
mands and the cost function, they found results broadly similar to Nerlove’s. Their preferred
functional form did suggest that Nerlove’s generalized model in Table 7.4 did somewhat un-
derestimate the range of outputs in which unit costs of production would continue to decline.
They also redid the study using a sample of 123 firms from 1970, and found similar results.
In the latter sample, however, it appeared that many firms had expanded rapidly enough
to exhaust the available economies of scale. We will revisit the 1970 data set in a study of
efficiency in Section 17.6.4.

The preceding example illustrates three useful tools in identifying and dealing with
unspecified nonlinearity: analysis of residuals, the use of piecewise linear regression,
and the use of polynomials to approximate the unknown regression function.

7.3.3 INTRINSIC LINEARITY AND IDENTIFICATION

The loglinear model illustrates an intermediate case of a nonlinear regression model.
The equation is intrinsically linear by our definition; by taking logs of ¥; = ozX,-’3 Yef, we
obtain

InY, =lna+ B InX; +¢ (7-8)

"TABLE 7.4 Log-Quadratic Cost Function (Standard Errors i
_Parentheses). . '

log O log’ Q log(P./ Pp) log(Pg/ Pr) R?

All firms 0.151 0.117 0.498 —0.062 0.95
(0.062) (0.012) (0.161) (0.151)
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or
i =P+ Bxi + &

Although this equation is linear in most respects, something has changed in that it is no
longer linear in &. Written in terms of ;. we obtain a fully linear model. But that may
not be the form of interest. Nothing is lost, of course, since f; is just Ina. If §; can be
estimated, then an obvious estimate of « is suggested.

This fact leads us to a second aspect of intrinsically linear models. Maximum like-
lihood estimators have an “invariance property.” In the classical normal regression
model, the maximum likelihood estimator of o is the square root of the maximum like-
lihood estimator of 2. Under some conditions, least squares estimators have the same
property. By exploiting this, we can broaden the definition of linearity and include some
additional cases that might otherwise be quite complex.

o B B e e

DEFINITION 7.1 Intrinsic Linearity
In the classical linear regression model, if the K parameters Bi. B, ..., Bx can

be written as K one-to-one, possibly nonlinear functions of a set of K underlying
parameters 61, 61, ..., Ok, then the model is intrinsically linear in 6.

Example 7.4 [Intrinsically Linear Regression
In Section 17.5.4, we will estimate the parameters of the model

flylpon = L2207 :(;)) Lyt

by maximum likelihood. In this model, E [y | x] = (Bp) + px, which suggests another way
that we might estimate the two parameters. This function is an intrinsically linear regression
model, E [y | x] = 1 + B2x, in which 8y = 8p and 8, = p. We can estimate the parameters by
least squares and then retrieve the estimate of g using by /b,. Since this value is a nonlinear
function of the estimated parameters, we use the delta method to estimate the standard error.
Using the data from that example, the least squares estimates of ; and 8, (with standard
errors in parentheses) are —4.1431 (23.734) and 2.4261 (1.5915). The estimated covariance
is —36.979. The estimate of 8 is —4.1431/2.4261 = —1.7077. We estimate the sampling
variance of 8 with

~

a2 2 , i
Est. Var[f] = (%) Varl.] + (%) \75’[b2]+2<%> (%)6&[@,@]
1 gl

= 8.6889%

Table 7.5 compares the least squares and maximum likelihood estimates of the parameters.
The lower standard errors for the maximum likelihood estimates result from the inefficient
(equal) weighting given to the observations by the least squares procedure. The gamma
distribution is highly skewed. In addition, we know from our results in Appendix C that this
distribution is an exponential family. We found for the gamma distribution that the sufficient
statistics for this density were ¥;y; and ¥, In y;. The least squares estimator does not use the
second of these, whereas an efficient estimator will.



CHAPTER 7 4 Functional Form and Structural Change 129

TABLE 7.5 Estimates of the Regression in a Gamma Model: Least Squares
' ersus Maximum Likelihood

B o

Estimate  Standard Error Estimate  Standard Error
Least squares —1.708 8.689 2426 1.592
Maximum likelihood —-4.719 2.403 3.151 0.663

The emphasis in intrinsic linearity is on “one to one.” If the conditions are met, then
the model can be estimated in terms of the functions 8, ..., Sk, and the underlying
parameters derived after these are estimated. The one-to-one correspondence is an
identification condition. If the condition is met, then the underlying parameters of the
regression (@) are said to be exactly identified in terms of the parameters of the linear
model B. An excellent example is provided by Kmenta (1986, p. 515).

Example 7.5 CES Production Function
The constant elasticity of substitution production function may be written

Iny=Iny — ZIn[8K " + (1 — 8)L ] + . (7-9)
0

A Taylor series approximation to this function around the point p = 0 is
Iny =Iny +v8INK +v(1 = 8)InL + pvé(1 = 8){—3InK —InL} + ¢
= P1X1 + BaXa + PaXa + Baxs + €, (7-10)
where x; =1, Xo =InK, X3 =InL, x4 = —% In2(K/L), and the transformations are
Br=Iny, Bo=vs, pfa=v(1-3), Bs=pvs(1-23),
y=eb, 8=p/(Ba+Ba), v=PB2+PBs p=PaB2+B3)/(BPa).

Estimates of 81, 82, 83, and B4 can be computed by least squares. The estimates of y, §, v,
and p obtained by the second row of (7-11) are the same as those we would obtain had we
found the nonlinear least squares estimates of (7-10) directly. As Kmenta shows, however,
they are not the same as the nonlinear least squares estimates of (7-9) due to the use of the
Taylor series approximation to get to (7-10). We would use the delta method to construct the
estimated asymptotic covariance matrix for the estimates of ' = [y, §, v, p]. The derivatives
matrix is

(7-11)

eh 0 0 0
co 3 |0 B/(B+ Ba)2  —B2/(B2 + Bs)? 0
- 3_ﬂ' - 10 1 1 0

0 —BsBa/(B3Bs) —BaBs/(B2PE) (Bo+ B3)/(BaBo)

The estimated covariance matrix for § is € [s2(X'X) ']€".
Not all models of the form
Vi =P @)xi1 + Bo(O)xin + - - + Br(D)xik + &; (7-12)

are intrinsically linear. Recall that the condition that the functions be one to one (i.e.,
that the parameters be exactly identified) was required. For example,

v Vi =a+ Bxi +yxp+ Byxis + &
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is nonlinear. The reason is that if we write it in the form of (7-12), we fail to account
for the condition that B4 equals 8,85, which is a nonlinear restriction. In this model,
the three parameters «, 8. and y are overidentified in terms of the four parameters
B, B2, B, and B4. Unrestricted least squares estimates of 8, B3, and B4 can be used to
obtain two estimates of each of the underlying parameters and there is no assurance
that these will be the same.

7.4 MODELING AND TESTING
FOR A STRUCTURAL BREAK

One of the more common applications of the F test is in tests of structural change.® In
specifying a regression model, we assume that its assumptions apply to all the obser-
vations in our sample. It is straightforward, however, to test the hypothesis that some
of or all the regression coefficients are different in different subsets of the data. To
analyze a number of examples, we will revisit the data on the U.S. gasoline market’ that
we examined in Example 2.3. As Figure 7.5 following suggests, this market behaved in
predictable, unremarkable fashion prior to the oil shock of 1973 and was quite volatile
thereafter. The large jumps in price in 1973 and 1980 are clearly visible, as is the much
greater variability in consumption. It seems unlikely that the same regression model
would apply to both periods.

7.4.1 DIFFERENT PARAMETER VECTORS

The gasoline consumption data span two very different periods. Up to 1973, fuel was
plentiful and world prices for gasoline had been stable or falling for at least two decades.
The embargo of 1973 marked a transition in this market (at least for a decade or so),
marked by shortages, rising prices, and intermittent turmoil. It is possible that the en-
tire relationship described by our regression model changed in 1974. To test this as a
hypothesis, we could proceed as follows: Denote the first 14 years of the data in y and
X as y; and X and the remaining years as y, and X,. An unrestricted regression that
allows the coefficients to be different in the two periods is

yl _ Xl 0 ﬂl [61:| 7_13

HE RN =
Denoting the data matrices as y and X, we find that the unrestricted least squares
estimator is

-1
B X'X;, 0 X'yl b
— (X’ IX'y = 18 1 — 7-14
b (X X) y 0 X’ZXZ X’zyz bz ’ ( )

which is least squares applied to the two equations separately. Therefore, the total sum
of squared residuals from this regression will be the sum of the two residual sums of

8This test is often labeled a Chow test, in reference to Chow (1960).
9The data are listed in Appendix Table A6.1.

.
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squares from the two separate regressions:
e'e =eje; + eje;.

The restricted coefficient vector can be obtained in two ways. Formally, the restriction
B1 = B,is RB = q, where R = [I: —I] and q = 0. The general result given earlier can
be applied directly. An easier way to proceed is to build the restriction directly into the
model. If the two coefficient vectors are the same, then (7-13) may be written

Vi Xi &1
= =+ s
M {Xz} g M
and the restricted estimator can be obtained simply by stacking the data and estimating
a single regression. The residual sum of squares from this restricted regression, e’e,
then forms the basis for the test. The test statistic is then given in (6-6), where J, the

number of restrictions, is the number of columns in X; and the denominator degrees of
freedom is ny + ny — 2k.

7.4.2 INSUFFICIENT OBSERVATIONS

In some circumstances, the data series are not long enough to estimate one or the
other of the separate regressions for a test of structural change. For example, one might
surmise that consumers took a year or two to adjust to the turmoil of the two oil price
shocks in 1973 and 1979, but that the market never actually fundamentally changed or
that it only changed temporarily. We might consider the same test as before, but now
only single out the four years 1974, 1975, 1980, and 1981 for special treatment. Since
there are six coefficients to estimate but only four observations, it is not possible to fit
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the two separate models. Fisher (1970) has shown that in such a circumstance, a valid
way to proceed is as follows:

1. Estimate the regression, using the full data set, and compute the restricted sum of
squared residuals, e’e,.

2. Use the longer (adequate) subperiod (n; observations) to estimate the regression,
and compute the unrestricted sum of squares, €} e;. This latter computation is
done assuming that with only 7, < K observations, we could obtain a perfect fit
and thus contribute zero to the sum of squares.

3. The F statistic is then computed, using

(e.e. —eje))/ny
Flnop,ni— K|=—2*— "=
me.m = K] = o = &)

(7-15)
Note that the numerator degrees of freedom is 75, not K.' This test has been labeled
the Chow predictive test because it is equivalent to extending the restricted model to
the shorter subperiod and basing the test on the prediction errors of the model in this
latter period. We will have a closer look at that result in Section 7.5.3.

7.4.3 CHANGE IN A SUBSET OF COEFFICIENTS

The general formulation previously suggested lends itself to many variations that allow
a wide range of possible tests. Some important particular cases are suggested by our
gasoline market data. One possible description of the market is that after the oil shock
of 1973, Americans simply reduced their consumption of gasoline by a fixed proportion,
but other relationships in the market, such as the income elasticity, remained unchanged.
This case would translate to a simple shift downward of the log-linear regression model
or a reduction only in the constant term. Thus, the unrestricted equation has separate
coefficients in the two periods, while the restricted equation is a pooled regression with
separate constant terms. The regressor matrices for these two cases would be of the
form

(unrestricted) Xy =

i 0 Wpre73 0
0 i 0 wpost73

and

(restricted) Xz = .
0 i Wpost73

i 0 Wpre73]

The first two columns of X are dummy variables that indicate the subperiod in which
the observation falls.

Another possibility is that the constant and one or more of the slope coefficients
changed, but the remaining parameters remained the same. The results in Table 7.6
suggest that the constant term and the price and income elasticities changed much
more than the cross-price elasticities and the time trend. The Chow test for this type
of restriction looks very much like the one for the change in the constant term alone.
Let Z denote the variables whose coefficients are believed to have changed, and let W

90ne way to view this is that only n < K coefficients are needed to obtain this perfect fit.
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denote the variables whose coefficients are thought to have remained constant. Then,
the regressor matrix in the constrained regression would appear as

ipre Zpre 0 0 ‘VPTe
0 0 ipost Zpost WpOSt

X = (7-16)

As before, the unrestricted coefficient vector is the combination of the two separate
regressions.

7.4.4 TESTS OF STRUCTURAL BREAK WITH
UNEQUAL VARIANCES

An important assumption made in using the Chow test is that the disturbance variance
is the same in both (or all) regressions. In the restricted model, if this is not true, the
first n; elements of & have variance 012, whereas the next n; have variance 022, and so
on. The restricted model is, therefore, heteroscedastic, and our results for the classical
regression model no longer apply. As analyzed by Schmidt and Sickles (1977), Ohtani
and Toyoda (1985), and Toyoda and Ohtani (1986), it is quite likely that the actual
probability of a type I error will be smaller than the significance level we have chosen.
(That is, we shall regard as large an F statistic that is actually less than the appropriate
but unknown critical value.) Precisely how severe this effect is going to be will depend
on the data and the extent to which the variances differ, in ways that are not likely to
be obvious.

If the sample size is reasonably large, then we have a test that is valid whether or
not the disturbance variances are the same. Suppose that 8, and 8, are two consistent
and asymptotically normally distributed estimators of a parameter based on indepen-
dent samples,' with asymptotic covariance matrices Vi and V,. Then, under the null
hypothesis that the true parameters are the same,

6, — 0, has mean 0 and asymptotic covariance matrix V; + V.
Under the null hypothesis, the Wald statistic,
W= -6,(Vi+ V) -8, (7-17)

has a limiting chi-squared distribution with K degrees of freedom. A test that the differ-
ence between the parameters is zero can be based on this statistic.'? It is straightforward
to apply this to our test of common parameter vectors in our regressions. Large values
of the statistic lead us to reject the hypothesis. '

In a small or moderately sized sample, the Wald test has the unfortunate property
that the probability of a type I error is persistently larger than the critical level we
use to carry it out. (That is, we shall too frequently reject the null hypothesis that the
parameters are the same in the subsamples.) We should be using a larger critical value.

'Without the required independence, this test and several similar ones will fail completely. The problem
becomes a variant of the famous Behrens—Fisher problem.

128ee Andrews and Fair (1988). The true size of this suggested test is uncertain. It depends on the nature of the
alternative. If the variances are radically different, the assumed critical values might be somewhat unreliable.
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Ohtani and Kobayashl (1986) have devised a “bounds” test that gives a partial remedy
for the problem.'3

It has been observed that the size of the Wald test may differ from what we have
assumed, and that the deviation would be a function of the alternative hypothesis. There
are two general settings in which a test of this sort might be of interest. For comparing
two possibly different populations — such as the labor supply equations for men versus
women — not much more can be said about the suggested statistic in the absence of
specific information about the alternative hypothesis. But a great deal of work on this
type of statistic has been done in the time-series context. In this instance, the nature of
the alternative is rather more clearly defined. We will return to this analysis of structural
breaks in time-series models in Section 7.5.4.

7.5 TESTS OF MODEL STABILITY

The tests of structural change described in Section 7.4 assume that the process underlying
the data is stable up to a known transition point, where it makes a discrete change to a
new, but thereafter stable, structure. In our gasoline market, that might be a reasonable
assumption. In many other settings, however, the change to a new regime might be
more gradual and less obvious. In this section, we will examine two tests that are based
on the idea that a regime change might take place slowly, and at an unknown point
in time, or that the regime underlying the observed data might simply not be stable
at all.

7.5.1 HANSEN’S TEST

Hansen’s (1992) test of model stability is based on a cumulative sum of the least squares
residuals. From the least squares normal equations, we have

Zx,e[—() and Z( ) 0.

Let the vector f; be the (K+1) x 1 tth observation in this pair of sums. Then, > f, = 0.

Let the sequence of partial sums be s, = "), f,, so sy = 0. Finally, let F = TS " £,/
and S = Z, 1 8:8;. Hansen’s test statistic can be computed simply as H = tr(F- 1S)

Large values of H give evidence against the hypothesis of model stability. The logic of
Hansen’s test is that if the model is stable through the T periods, then the cumulative
sums in S will not differ greatly from those in F. Note that the statistic involves both the
regression and the variance. The distribution theory underlying this nonstandard test
statistic is much more complicated than the computation. Hansen provides asymptotic
critical values for the test of model constancy which vary with the number of coefficients
in the model. A few values for the 95 percent significance level are 1.01 for K = 2, 1.90
for K = 6,3.75 for K = 15, and 4.52 for K = 19.

138ee also Kobayashi (1986) Analternative, somewhat more cumbersome test is proposed by Jayatissa (1977).
Further discussion is given in Thursby (1982).
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7.5.2 RECURSIVE RESIDUALS AND THE CUSUMS TEST

Example 7.6 shows a test of structural change based essentially on the model’s ability
to predict correctly outside the range of the observations used to estimate it. A similar
logic underlies an alternative test of model stability proposed by Brown, Durbin, and
Evans (1975) based on recursive residuals. The technique is appropriate for time-series
data and might be used if one is uncertain about when a structural change might have
taken place. The null hypothesis is that the coefficient vector § is the same in every
period; the alternative is simply that it (or the disturbance variance) is not. The test
is quite general in that it does not require a prior specification of when the structural
change takes place. The cost, however, is that the power of the test is rather limited
compared with that of the Chow test.!*

Suppose that the sample contains a total of T observations.”> The rth recursive
residual is the ex post prediction error for y, when the regression is estimated using
only the first t — 1 observations. Since it is computed for the next observation beyond
the sample period, it is also labeled a one step ahead prediction error;

€ = Yt — X; b;_1,

where x, is the vector of regressors associated with observation y; and b,_; is the least
squares coefficients computed using the first # — 1 observations. The forecast variance
of this residual is

0]2‘1 =0’ [1 + X;(X;_1Xt—1)_1xt] . (7-18)

Let the rth scaled residual be
v ¢

w, = .
VIR XX )%,

(7-19)

Under the hypothesis that the coefficients remain constant during the full sample period,
w, ~ N[0, 0] and is independent of w; for all s # r. Evidence that the distribution of
w, is changing over time weighs against the hypothesis of model stability.

One way to examine the residuals for evidence of instability is to plot w, /& (see
below) simply against the date. Under the hypothesis of the model, these residuals are
uncorrelated and are approximately normally distributed with mean zero and standard
deviation 1. Evidence that these residuals persistently stray outside the error bounds —2
and +2 would suggest model instability. (Some authors and some computer packages
plot ¢, instead, in which case the error bounds are +24 V1+ X, (X;_1X,_1)‘1xr.

The CUSUM test is based on the cumulated sum of the residuals:

r=t
w=3Y I, (120
r=K+1 o

where 62 = (T- K- 1)! Z,T=K+1(w, —w)?and w = (T — K)™' Y)_g.1 w,. Under

14The test is frequently criticized on this basis. The Chow test, however, is based on a rather definite piece of
information, namely, when the structural change takes place. If this is not known or must be estimated, then
the advantage of the Chow test diminishes considerably.

15Since we are dealing explicitly with time-series data at this point, it is convenient to use T instead of n for
the sample size and ¢ instead of i to index observations.
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the null hypothesis, W, has a mean of zero and a variance approximately equal to the
number of residuals being summed (because each term has variance 1 and they are
independent). The test is performed by plotting W; against t. Confidence bounds for the
sum are obtained by plotting the two lines that connect the points [K, £a(T — K)'/?]
and [T, £3a(T — K)*/?]. Values of a that correspond to various significance levels can
be found in their paper. Those corresponding to 95 percent and 99 percent are 0.948
and 1.143, respectively. The hypothesis is rejected if W, strays outside the boundaries.

Example 7.6 Structural Break in the Gasoline Market
The previous Figure 7.5 shows a plot of prices and quantities in the U.S. gasoline market
from 1960 to 1995. The first 13 points are the layer at the bottom of the figure and suggest
an orderly market. The remainder clearly reflect the subsequent turmoil in this market.
We will use the Chow tests described to examine this market. The model we will examine
is the one suggested in Example 2.3, with the addition of a time trend:

In(G/pop)t = B1 + B2 In(! /pop) + B3I Pas + BaIn Puce + BsIn Pyct + Bot + &

The three prices in the equation are for G, new cars, and used cars. / /pop is per capita
income, and G/pop is per capita gasoline consumption. Regression results for four functional
forms are shown in Table 7.6. Using the data for the entire sample, 1960 to 1995, and for the
two subperiods, 1960 to 1973 and 1974 to 1995, we obtain the three estimated regressions
in the first and last two columns. The F statistic for testing the restriction that the coefficients
in the two equations are the same is

(0.02521877 — 0.000652271 — 0.004662163) /6

F6,24] =
16, 24] (0.000652271 + 0.004662163) /(14 + 22 — 12)

= 14.958.

The tabled critical value is 2.51, so, consistent with our expectations, we would reject the
hypothesis that the coefficient vectors are the same in the two periods.

Using the full set of 36 observations to fit the model, the sum of squares is ee =
0.02521877. When the ny =4 observations for 1974, 1975, 1980 and 1981 are removed
from the sample, the sum of squares falls to e’e =0.01968599. The F statistic is 1.817.
Since the tabled critical value for F[4,32 — 6] is 2.72, we would not reject the hypothesis of
stability. The conclusion to this point would be that although something has surely changed
in the market, the hypothesis of a temporary disequilibrium seems not to be an adequate
explanation.

An alternative way to compute this statistic might be more convenient. Consider the
original arrangement, with all 36 observations. We now add to this regression four binary
variables, Y1974, Y1975, Y1980, and Y1981. Each of these takes the value one in the single

ABLE 7.6 Gasoline Consumption Equations

Coefficients 1960-1995 Pooled Preshock Postshock
Constant 24.6718 21.2630 —51.1812

Constant 21.3403 20.4464

In I/pop 1.95463 1.83817 0.423995 1.01408

In PG —0.115530 —0.178004 0.0945467 —0.242374
In PNC 0.205282 0.209842 0.583896 0.330168
In PUC —0.129274 —0.128132 —0.334619 —0.0553742
Year —-0.019118 —0.168618 0.0263665 —0.0126170
R? 0.968275 0.978142 0.998033 0.920642
Standard error 0.02897572 0.02463767 0.00902961 0.017000

Sum of squares 0.02521877 0.0176034 0.000652271 0.004662163
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year indicated and zero in all 35 remaining years. We then compute the regression with the
original six variables and these four additional dummy variables. The sum of squared residuals
in this regression is 0.01968599, so the F statistic for testing the joint hypothesis that the
four coefficients are zero is F{4,36 — 10] = {[(0.02518777 —0.01968599) /4]/[0.01968599/
(36 — 10)]} = 1.817, once again. (See Section 7.4.2 for discussion of this test.)

The F statistic for testing the restriction that the coefficients in the two equations are the
same apart from the constant term is based on the last three sets of results in the table;

(0.0176034 — 0.000652271 — 0.004662163) /5

24] =
F 15,241 (0.000652271 + 0.004662163) /(14 + 22 — 12)

= 11.099.

The tabled critical value is 2.62, so this hypothesis is rejected as well. The data suggest
that the models for the two periods are systematically different, beyond a simple shift in the
constant term.

The F ratio that results from estimating the model subject to the restriction that the two
automobile price elasticities and the coefficient on the time trend are unchanged is

(0.00802099 — 0.000652271 — 0.004662163) /3

4 ==
F13.24] (0.000652271 + 0.004662163) /(14 4+ 22 — 12)

= 4.086.

(The restricted regression is not shown.) The critical value from the F tabie is 3.01, so this
hypothesis is rejected as well. Note, however, that this value is far smaller than those we
obtained previously. The P-value for this value is 0.981, so, in fact, at the 99 percent signifi-
cance level, we would not have rejected the hypothesis. This fact suggests that the bulk of
the difference in the models across the two periods is, indeed, explained by the changes in
the constant and the price and income elasticities.

The test statistic in (7-17) for the regression results in Table 7.6 gives a value of 128.6673.
The 5 percent critical value from the chi-squared table for 6 degrees of freedom is 12.59.
So, on the basis of the Wald test, we would reject the hypothesis that the same coefficient
vector applies in the two subperiods 1960 to 1973 and 1974 to 1995. We should note that
the Wald statistic is valid only in large samples, and our samples of 14 and 22 observations
hardly meet that standard.

We have tested the hypothesis that the regression model for the gasoline market changed
in 1973, and on the basis of the F test (Chow test) we strongly rejected the hypothesis of
model stability. Hansen’s test is not consistent with this result; using the computations out-
lined earlier, we obtain a value of H = 1.7248. Since the critical value is 1.90, the hypothesis
of model stability is now not rejected.

Figure 7.6 shows the CUSUM test for the gasoline market. The results here are more or
less consistent with the preceding results. The figure does suggest a structural break, though
at 1984, not at 1974 or 1980 when we might have expected it.

7.5.3 PREDICTIVE TEST

The hypothesis test defined in (7-15) in Section 7.4.2 is equivalent to Hy: 8, = B, in the
“model”

yw=xp+e&, t=1....T
}’t=x;ﬂ2+8t, t=7—i+17771+B

(Note that the disturbance variance is assumed to be the same in both subperiods.) An
alternative formulation of the model (the one used in the example) is

b G+l
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Plot of Cumulative Sum of Residuals
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FIGURE 7.6 CUSUM Test.

This formulation states that
yt=X;ﬂ1+8t, t=1,,71
vi=xp+rn+e, t=0L+1,....1+5.

Since each y, is unrestricted, this alternative formulation states that the regression
model of the first 77 periods ceases to operate in the second subperiod (and, in fact, no
systematic model operates in the second subperiod). A test of the hypothesis y = 0 in
this framework would thus be a test of model stability. The least squares coefficients for
this regression can be found by using the formula for the partitioned inverse matrix;

-1
<b> B {x;xl +X5X; X}

Xiy1 + Xoy2

c X, I Y
X Xt —(X1 X)X, {X;yl + Xéyz}
XXXt I+ XX X)X, y2

by

(Y]
where b; is the least squares slopes based on the first 7} observations and ¢, is y; — Xzb;.
The covariance matrix for the full set of estimates is s* times the bracketed matrix.
The two subvectors of residuals in this regression are e; = y; — X1b; and e; =y, —
(X2b; + Iez) = 0, so the sum of squared residuals in this least squares regression is just
eje;. This is the same sum of squares as appears in (7-15). The degrees of freedom for
the denominatoris [1; + 1> — (K+ B3)] = T; — K as well, and the degrees of freedom for
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the numerator is the number of elements in y which is 75. The restricted regression with
y = 0is the pooled model, which is likewise the same as appears in (7-15). This implies
that the F statistic for testing the null hypothesis in this model is precisely that which
appeared earlier in (7-15), which suggests why the test is labeled the “predictive test.”

7.5.4 UNKNOWN TIMING OF THE STRUCTURAL BREAK'®

The testing procedures described in this section all assume that the point of the structural
break is known. When this corresponds to a discrete historical event, this is a reasonable
assumption. But, in some applications, the timing of the break may be unknown. The
Chow and Wald tests become useless at this point. The CUSUMS test is a step in the
right direction for this situation, but, as noted by a number of authors [e.g., Andrews
(1993)] it has serious power problems. Recent research has provided several strategies
for testing for structural change when the change point is unknown.

In Section 7.4 we considered a test of parameter equality in two populations. The
natural approach suggested there was a comparison of two separately estimated param-
eter vectors based on the Wald criterion,

=@ — 0, (Vi + V)N, — 6y),

where 1 and 2 denote the two populations. An alternative approach to the testlng
procedure is based on a likelihood ratio-like statistic,

A=h[(L1+ L), L]

where L; + L is the log likelihood function (or other estimation criterion) under the
alternative hypothesis of model instability (structural break) and Lis the log likelihood
for the pooled estimator based on the null hypothesis of stability and / is the appropriate
function of the values, such as A(a, b) = —2(b — a) for maximum likelihood estimation.
A third approach, based on the Lagrange multiplier principle, will be developed below.
There is a major problem with this approach; the split between the two subsamples must
be known in advance. In the time series application we will examine in this section, the
problem to be analyzed is that of determining whether a model can be claimed to
be stable through a sample period t =1, ..., T against the alternative hypothesis that
the structure changed at some unknown time t*. Knowledge of the sample split is crucial
for the tests suggested above, so some new results are called for.

We suppose that the model E[m(y,, x, | 8)] = 0 is to be estimated by GMM using
T observations. The model is stated in terms of a moment condition, but we intend for
this to include estimation by maximum likelihood, or linear or nonlinear least squares.
As noted earlier, all these cases are included. Assuming GMM just provides us a con-
venient way to analyze all the cases at the same time. The hypothesis to be investigated
is as follows: Let [7 7] = T; denote the integer part of = T where 0 <7 < 1. Thus, this
is a proportion & of the sample observations, and defines subperiod 1, = 1,..., 1.
Under the null hypothesis, the model E[m(y,, x; | 8)] = 01is stable for the entire sample
period. Under the alternative hypothesis, the model E[m(y, x, | B8;)] = 0 applies to

16The material in this section is more advanced than that in the discussion thus far. It may be skipped at this
point with no loss in continuity. Since this section relies heavily on GMM estimation methods, you may wish
to read Chapter 18 before continuing.
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observations 1, ..., [7T] and model E[m(y,, x,|B,)] = 0 applies to the remaining
T — [n T] observations.” This describes a nonstandard sort of hypothesis test since
under the null hypothesis, the ‘parameter’ of interest, 7, is not even part of the model.
Andrews and Ploberger (1994) denote this a “nuisance parameter [that] is present only
under the alternative.”

Suppose w were known. Then, the optimal GMM estimator for the first subsample
would be obtained by minimizing with respect to the parameters 8, the criterion function

qi(m) = m{ (7 | B)[Est.Asy. Vary/[x T]m} (x| ;)] iy (7 | B;)
=i} (7 | B)[W1(m)] 'y (| By)

where
{7
1B = oo > m (x| By).

t=1

The asymptotic covariance (weighting) matrix will generally be computed using a first
round estimator in

. 1 7] A0
Wir) = 7] th(” | 1)
=1

~0

m! (7 | B)). (7-21)

In this time-series setting, it would be natural to accommodate serial correlation in this
estimator. Following Hall and Sen (1999), the counterpart to the Newey-West (1987a)
estimator (see Section 11.3) would be

B(T)
Wi(m) = Wy o(r) + Z wir [Wi () +VAV'1,]-(7T)]
j=1
where W, ¢() is given in (7-21) and
. 1 7l NN <0
Wy () = — Z mt(ﬂ |I31)mt—j(7[ .Bl)
[]TT] t=j+1

B(T) is the bandwidth, chosen to be O(TY*)—this is the L in (10-16) and (12-17)—
and w; r is the kernel. Newey and West’s value for this is the Bartlett kernel,
[1—j/(1+ B(T))]. (See, also, Andrews (1991), Hayashi (2000, pp. 408-409) and the end
of Section C.3.) The asymptotic covariance matrix for the GMM estimator would then
be computed using

Est.Asy. Var[ﬁl] = G ’l(n)VAVl’l(n)(x;l (71)]_1 =V

Bl

17 Andrews (1993), on which this discussion draws heavily, allows for some of the parameters to be assumed to
be constant throughout the sample period. This adds some complication to the algebra involved in obtaining
the estimator, since with this assumption, efficient estimation requires joint estimation of the parameter
vectors, whereas our formulation allows GMM estimation to proceed with separate subsamples when needed.
The essential results are the same.
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where

[7T]
= 1 3mt(7f|.31)
Gi(m) =
1o [nT}Z,_l o5,

Estimators for the second sample are found by changing the summations to [ 7] +
1,... T and for the full sample by summing from 1 to 7.

Still assuming that 7 is known, the three standard test statistics for testing the null
hypothesis of model constancy against the alternative of structural break at [ 7] would
be as follows: The Wald statistic is :

Wr(m) = [B1 () = Bo()] {Vi(m) + Vo) } ' [B,(r) = By(m)].

[See Andrews and Fair (1988).] There is a small complication with this result in this
time-series context. The two subsamples are generally not independent so the additive
result above is not quite appropriate. Asymptotically, the number of observations close
to the switch point, if there is one, becomes small, so this is only a finite sample problem.
The likelihood ratio-like statistic would be

LRr(m) = [qi(m | B) + @2 | B)] — [ | B) + (7 | B)]

where g is based on the full sample. (This result makes use of our assumption that there
are no common parameters so that the criterion for the full sample is the sum of those
for the subsamples. With common parameters, it becomes slightly more complicated.)
The Lagrange multiplier statistic is the most convenient of the three. All matrices with
subscript “7” are based on the full sample GMM estimator. The weighting and deriva-
tive matrices are computed using the full sample. The moment equation is computed
at the first subsample [though the sum is divided by T not [n T]—see Andrews (1993,

eqn. (4.4)];

LMz () = n(l—T—n)ﬁ”(’T 1BV GGV G GV (r | By,
The LM statistic is simpler, as it requires the model only to be estimated once, using the
full sample. (Of course, this is a minor virtue. The computations for the full sample and
the subsamples are the same, so the same amount of setup is required either way.) In
each case, the statistic has a limiting chi-squared distribution with K degrees of freedom
where K is the number of parameters in the model.

Since 7 is unknown, the preceding does not solve the problem posed at the outset.
The CUSUMS and Hansen tests discussed in Section 7.5 were proposed for that pur-
pose, butlack power and are generally for linear regression models. Andrews (1993) has
derived the behavior of the test statistic obtained by computing the statistics suggested
previously at the range of candidate values, that is the different partitionings of the
sample say mp=.15 to .85, then retaining the maximum value obtained. These are
the Sup Wr(x), Sup LRr(w) and Sup LMy (), respectively. Although for a given 7,
the statistics have limiting chi-squared distributions, obviously, the maximum does not.
Tables of critical values obtained by Monte Carlo methods are provided in Andrews
(1993). An interesting side calculation in the process is to plot the values of the test
statistics. (See the following application.) Two alternatives to the supremum test are
suggested by Andrews and Ploberger (1994) and Sowell (1996). The average statistics,
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Avg Wr(m), Avg LRr(w) and Avg LMy () are computed by taking the sample average
of the sequence of values over the R partitions of the sample from 7 = nrptonr = 1 — .
The exponential statistics are computed as

1R
Exp Wr(x) = 1n R Z exp[.5Wr(n,)]

r=1

and likewise for the LM and LR statistics. Tables of critical values for a range of values
of y and K are provided by the authors.'8

Not including the Hall and Sen approaches, the preceding provides nine differ-
ent statistics for testing the hypothesis of parameter constancy—though Andrews and
Ploberger (1994) suggest that the Exp LR and Avg LR versions are less than optimal.
As the authors note, all are based on statistics which converge to chi-squared statistics.
Andrews and Ploberger present some results to suggest that the exponential form may
be preferable based on its power characteristics.

In principle the preceding suggests a maximum likelihood estimator of 7 (or T7) if
ML is used as the estimation method. Properties of the estimator are difficult to obtain,
as shown in Bai (1997). Moreover, Bai’s (1997) study based on least squares estimation
of a linear model includes some surprising results that suggest that in the presence of
multiple change points in a sample, the outcome of the Andrews and Ploberger tests
may depend crucially on what time interval is examined.!?

Example 7.7 Instability of the Demand for Money
We will examine the demand for money in some detail in Chapters 19 and 20. At this point,
we will take a cursory look at a simple (and questionable) model

(Mm—plt=a+ By +vyii+e&

where m, p, and y are the logs of the money supply (M1), the price level (CPI_U) and GDP,
respectively, and i is the interest rate (90-day T-bill rate) in our data set. Quarterly data
on these and several other macroeconomic variables are given in Appendix F5.1 for the
quarters 1950.1 to 2000.4. We will apply the techniques described above to this money
demand equation. The data span 204 quarters. We chose a window from 1957.3 (quarter
30) to 1993.3 (quarter 175), which correspond roughly to # = .15 to = = .85. The function
is estimated by GMM using as instruments z; = [1,/,/;_1, Vi_1 ¥i_2). We will use a Newey—
West estimator for the weighting matrix with L = 204'4 ~ 4, so we will lose 4 additional

18 An extension of the Andrews and Ploberger methods based on the overidentifying restrictions in the GMM
estimator is developed in Hall and Sen (1999). Approximations to the critical values are given by Hansen
(1997). Further results are given in Hansen (2000).

19Bai (1991), Bai, Lumsdaine and Stock (1999), Bai and Perron (1998a,b) and Bai (1997). “Estimation” of &
or 1j raises a peculiarity of this strand of literature. In many applications, the notion of a change point is tied to
an historical event, such as a war or a major policy shift. For example, in Bai (1997, p. 557), a structural change
in an estimated model of the relationship between 7-bill rates and the Fed’s discount rate is associated with a
specific date, October 9, 1979, a date which marked the beginning of a change in Fed operating procedures. A
second change date in his sample was associated with the end of that Fed policy regime while a third between
these two had no obvious identity. In such a case, the idea of a fixed = requires some careful thought as
to what is meant by 7 — oo. If the sampling process is defined to have a true origin in a physical history,
wherever it is, then 7 cannot be fixed. As T increases, m must decline to zero and “estimation” of 7 makes no
sense. Alternatively, if 7 really is meant to denote a specific proportion of the sample, but remains tied to an
actual date, then presumably, increasing the sample size means shifting both origin and terminal in opposite
directions, at the same rate. Otherwise, insisting that the regime switch occur at time 7 T has an implausible
economic implication. Changing the orientation of the search to the change date, T, itself, does not remove
the ambiguities. We leave the philosophical resolution of either interpretation to the reader. Andrews’ (1993,
p. 845) assessment of the situation is blunt: “[n]o optimality properties are known for the ML estimator of z.”
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esults of Moglel
Statistic Maximum Average Average exp
LM 10.43 442 331
Wald ‘ 11.85 4.57 3.67
LR 15.69 — ' —
Critical Value 14.152 4220 6.07°

*Andrews (1993), Table I, p = 3, mg = 0.15.
®Andrews and Ploberger (1994), Table II, p = 3, 7g = 0.15.
¢Andrews and Ploberger (1994), Table I, p = 3, mp = 0.15.

observations after the two lagged values in the instruments. Thus, the estimation sampie is
1951.3 to 2000.4, a total of 197 observations.

The GMM estimator is precisely the instrumental variables estimator shown in Chapter 5.
The estimated equation (with standard errors shown in parentheses) is

(m— p); = —1.824(0.166) + 0.306 (0.0216) y; — 0.0218(0.00252) i; + e;.

The Lagrange muttiplier form of the test is particularly easy to carry out in this framework.
The sample moment equations are

1
E[mr]=E [? ;Zr(}’t - X;ﬂ):l =0

The derivative matrix is likewise simple; G = —(1/T)Z'X. The results of the various testing
procedures are shown in Table 7.7.

The results are mixed; some of the statistics reject the hypothesis while others do not.
Figure 7.7 shows the sequence of test statistics. The three are quite consistent. If there is a
structural break in these data, it occurs in the late 1970s. These results coincide with Bai’s
findings discussed in the preceding footnote.

FIGURE 7.7  Structural Change Test Statistic
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7.6 SUMMARY AND CONCLUSIONS

This chapter has discussed the functional form of the regression model. We examined
the use of dummy variables and other transformations to build nonlinearity into the
model. We then considered other nonlinear models in which the parameters of the
nonlinear model could be recovered from estimates obtained for a linear regression.
The final sections of the chapter described hypothesis tests designed to reveal whether
the assumed model had changed during the sample period, or was different for different
groups of observations. These tests rely on information about when (or how) the sample
is to be partitioned for the test. In many time series cases, this is unknown. Tests designed
for this more complex case were considered in Section 7.5.4.

Key Terms and Concepts

¢ Binary variable e Knots ¢ Recursive residual
¢ Chow test ¢ Loglinear model ¢ Response
¢ CUSUM test ¢ Marginal effect ¢ Semilog model
¢ Dummy variable ¢ Nonlinear restriction ¢ Spline
e Dummy variable trap * One step ahead prediction e Structural change
¢ Exactly identified error ¢ Threshold effect
e Hansen’s test ¢ Overidentified ¢ Time profile
¢ Identification condition » Piecewise continuous e Treatment
o Interaction term ¢ Predictive test o Wald test
¢ Intrinsically linear ¢ Qualification indices
Exercises

1. In Solow’s classic (1957) study of technical change in the U.S. economy, he suggests
the following aggregate production function: g(r) = A(r) f[k(¢)], where g(¢) is ag-
gregate output per work hour, k(¢) is the aggregate capital labor ratio, and A(r) is
the technology index. Solow considered four static models,q/A=a+81Ink, q/ A=
a—B/k, In(q/A) = o+ Blnk, and In(q/ A) = o + B/ k. Solow’s data for the years
1909 to 1949 are listed in Appendix Table F7.2. Use these data to estimate the «
and g of the four functions listed above. [Note: Your results will not quite match
Solow’s. See the next exercise for resolution of the dlscrepancy]

2. In the aforementioned study, Solow states:

A scatter of q/A against k is shown in Chart 4. Considering the amount of a
priori doctoring which the raw figures have undergone, the fit is remarkably
tight. Except, that is, for the laver of points which are obviously too high. These
maverick observations relate to the seven last years of the period, 1943-1949.
From the way they lie almost exactly parallel to the main scatter, one is tempted
to conclude that in 1943 the aggregate production function simply shifted.

a. Compute a scatter diagram of g/ A against k.

b. Estimate the four models you estimated in the previous problem including a
dummy variable for the years 1943 to 1949. How do your results change? [Note:
These results match those reported by Solow, although he did not report the
coefficient on the dummy variable.]
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¢. Solow went on to surmise that, in fact, the data were fundamentally different
in the years before 1943 than during and after. Use a Chow test to examine
the difference in the two subperiods using your four functional forms. Note that
with the dummy variable, you can do the test by introducing an interaction term
between the dummy and whichever function of & appears in the regression. Use
an F test to test the hypothesis.

A regression model with K = 16 independent variables is fit using a panel of seven

years of data. The sums of squares for the seven separate regressions and the pooled

regression are shown below. The model with the pooled data allows a separate

constant for each year. Test the hypothesis that the same coefficients apply in every

year.

1954 1955 1956 1957 1958 1959 1960 All

Observations 65 55 87 95 103 87 78 570
e'e 104 88 206 144 199 308 211 1425

Reverse regression. A common method of analyzing statistical data to detect dis-
crimination in the workplace is to fit the regression

y=a+xB+yd+e, @

where y is the wage rate and d is a dummy variable indicating either membership
(d = 1) or nonmembership (d = 0) in the class toward which it is suggested the
discrimination is directed. The regressors x include factors specific to the particular
type of job as well as indicators of the qualifications of the individual. The hypothesis
of interest is Hyo:y > 0 versus H,:y < 0. The regression seeks to answer the
question, “In a given job, are individuals in the class (d = 1) paid less than equally
qualified individuals not in the class (d = 0)?” Consider an alternative approach.
Do individuals in the class in the same job as others, and receiving the same wage,
uniformly have higher qualifications? If so, this might also be viewed as a form of
discrimination. To analyze this question, Conway and Roberts (1983) suggested the
following procedure:

1. Fit (1) by ordinary least squares. Denote the estimates 4, b, and c.

2. Compute the set of qualification indices,

q = ai + Xb, . ®

Note the omission of cd from the fitted value.
3. Regress q on a constant, y and d. The equation is

q =0, + B.y+ yud + &.. 3)

The analysis suggests that if y < 0, y, > 0.
a. Prove that the theory notwithstanding, the least squares estimates ¢ and ¢, are
related by

_Gi-NA-R)

Tana-) © ?

*
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where

y1 = mean of y for observations with d = 1,
y = mean of y for all observations,
P =mean of d,
R? = coefficient of determination for (1),
r?, = squared correlation between y and d.

[Hint: The model contains a constant term. Thus, to simplify the algebra, assume
that all variables are measured as deviations from the overall sample means and
use a partitioned regression to compute the coefficients in (3). Second, in (2),
use the result that based on the least squares results y = ai + Xb + cd + e, so
q =y —cd — e. From here on, we drop the constant term. Thus, in the regression
in (3) you are regressing [y — cd — e] on y and d.

b. Will the sample evidence necessarily be consistent with the theory? [Hint: Sup-
pose that ¢ = 0.]

A symposium on the Conway and Roberts paper appeared in the Journal of Business

and Economic Statistics in April 1983.

5. Reverse regression continued. This and the next exercise continue the analysis of
Exercise 4. In Exercise 4, interest centered on a particular dummy variable in which
the regressors were accurately measured. Here we consider the case in which the
crucial regressor in the model is measured with error. The paper by Kamlich and
Polachek (1982) is directed toward this issue.

Consider the simple errors in the variables model,

y=a+8x*+e, x=x"+u,

where 1 and ¢ are uncorrelated and x is the erroneously measured, observed coun-

terpart to x*.

a. Assume that x*, u, and ¢ are all normally distributed with means p*, 0, and 0,
variances o2, 02, and o2, and zero covariances. Obtain the probability limits of
the least squares estimators of « and 8.

b. Asan alternative, consider regressing x on a constant and y, and then computing
the reciprocal of the estimate. Obtain the probability limit of this estimator.

¢. Do the “direct” and “reverse” estimators bound the true coefficient?

6. Reverse regression continued. Suppose that the model in Exercise 5 is extended to
y = Bx*+yd+e, x = x*+u. For convenience, we drop the constant term. Assume
that x*, ¢ and u are independent normally distributed with zero means. Suppose
that d is a random variable that takes the values one and zero with probabilities 7
and 1 — 7 in the population and is independent of all other variables in the model.
To put this formulation in context, the preceding model (and variants of it) have
appeared in the literature on discrimination. We view y as a “wage” variable, x* as
“qualifications,” and x as some imperfect measure such as education. The dummy
variable d is membership (d = 1) or nonmembership (d = 0) in some protected class.
The hypothesis of discrimination turns on y < 0 versus y > 0.

a. What is the probability limit of c, the least squares estimator of y, in the least
squares regression of y on x and d? [Hints: The independence of x* and d is
important. Also, plim d'd/n = Var[d] + F*[d] = n(1 — 7) 4+ 7% = . This minor
modification does not affect the model substantively, but it greatly simplifies the
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Period Constructed

Ship Type 1960-1964 1965-1969 1970-1974 1975-1979
A 0 4 18 11
B 29 53 44 18
C 1 - 1 2 1
D 0 0 1 4
E 0 7 12 1

Source: Data from McCullagh and Nelder (1983, p. 137).

algebra.] Now suppose that x* and d are not independent. In particular, suppose
that E[x*|d = 1] = u! and E[x*|d = 0] = u°. Repeat the derivation with this
assumption. : ‘
b. Consider, instead, a regression of x on y and d. What is the probability limit of
the coefficient on d in this regression? Assume that x* and d are independent.
c. Suppose that x* and d are not independent, but y is, in fact, less than zero.
Assuming that both preceding equations still hold, what is estimated by
(y|d=1) — (y|d = 0)? What does this quantity estimate if y does equal zero?
Data on the number of incidents of damage to a sample of ships, with the type
of ship and the period when it was constructed, are given in the Table 7.8. There
are five types of ships and four different periods of construction. Use F tests and
dummy variable regressions to test the hypothesis that there is no significant “ship
type effect” in the expected number of incidents. Now, use the same procedure to
test whether there is a significant “period effect.”
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SPECIFICATION ANALYSIS
AND MODEL SELECTION
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INTRODUCTION

Chapter 7 presented results which were primarily focused on sharpening the functional
form of the model. Functional form and hypothesis testing are directed toward im-
proving the specification of the model or using that model to draw generally narrow
inferences about the population. In this chapter we turn to some broader techniques that
relate to choosing a specific model when there is more than one competing candidate.
Section 8.2 describes some larger issues related to the use of the multiple regression
model—specifically the impacts of an incomplete or excessive specification on estima-
tion and inference. Sections 8.3 and 8.4 turn to the broad question of statistical methods
for choosing among alternative models.

8.2 SPECIFICATION ANALYSIS AND

148

MODEL BUILDING

Our analysis has been based on the assumption that the correct specification of the
regression model is known to be

y=XB +e. ' 81
There are numerous types of errors that one might make in the specification of the esti-
mated equation. Perhaps the most common ones are the omission of relevant variables
and the inclusion of superfluous variables.
8.2.1 BIAS CAUSED BY OMISSION OF RELEVANT VARIABLES
Suppose that a correctly specified regression model would be
y=XiB +XuB; + ¢, (8-2)

where the two parts of X have K; and K columns, respectively. If we regress y on X;
without including X, then the estimator is

b = X\ X)Xy = 8, + X[ X)X Xo8, + (X X)) " Xe. 8-3)

Taking the expectation, we see that unless X{X, = 0 or 8, = 0, b; is biased. The well-
known result is the omitted variable formula;

E[b; [X] =8, +Pi2By, (8-4)
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where
Pir = (X[ X)) X! X,. (8-5)

Each column of the K; x K, matrix P is the column of slopes in the least squares
regression of the corresponding column of X5 on the columns of Xj.

Example 8.1 Omitted Variables
If a demand equation is estimated without the relevant income variable, then (8-4) shows
how the estimated price elasticity will be biased. Letting b be the estimator, we obtain

Covlprice, income]
Var[price]

E[b|price, income] = 8 +

where y is the income coefficient. In aggregate data, it is unclear whether the missing co-
variance would be positive or negative. The sign of the bias in b would be the same as this
covariance, however, because Var[price] and y would be positive.

The gasoline market data we have examined in Examples 2.3 and 7.6 provide a striking
example. Figure 7.5 showed a simple plot of per capita gasoline consumption, G/pop against
the price index Pg. The plot is considerably at odds with what one might expect. But a look
at the data in Appendix Table F2.2 shows clearly what is at work. Holding per capita income,
! /pop and other prices constant, these data might well conform to expectations. In these
data, however, income is persistently growing, and the simple correlations between G/pop
and / /pop and between P and / /pop are 0.86 and 0.58, respectively, which are quite large.
To see if the expected relationship between price and consumption shows up, we will have
to purge our data of the intervening effect of / /pop. To do so, we rely on the Frisch-Waugh
result in Theorem 3.3. The regression results appear in Table 7.6. The first column shows
the full regression model, with In PG, In Income, and several other variables. The estimated
demand elasticity is —0.11553, which conforms with expectations. If income is omitted from
this equation, the estimated price elasticity is +0.074499 which has the wrong sign, but is
what we would expect given the theoretical results above.

In this development, it is straightforward to deduce the directions of bias when there
is a single included variable and one omitted variable. It is important to note, however,
that if more than one variable is included, then the terms in the omitted variable formula
involve multiple regression coefficients, which themselves have the signs of partial, not
simple, correlations. For example, in the demand equation of the previous example, if the
price of a closely related product had been included as well, then the simple correlation
between price and income would be insufficient to determine the direction of the bias in
the price elasticity. What would be required is the sign of the correlation between price
and income net of the effect of the other price. This requirement might not be obvious,
and it would become even less so as more regressors were added to the equation.

8.2.2 PRETEST ESTIMATION
The variance of b; is that of the third term in (8-3), which is
Var[b; | X] = o*(X|X;) L. (8-6)

If we had computed the correct regression, including X5, then the slopes on X; would
have been unbiased and would have had a covariance matrix equal to the upper left
block of o2(X’X) . This matrix is

Varlbi 2| X] = o2 (X|MoX) L, 87
1
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where
M, =1 - Xo(X5Xp) 'X),
or
Var[by» | X] = o2 [X}X; — X, Xo(X5X0) ' X5 XL

We can compare the covariance matrices of by and by ; more easily by comparing their
inverses [see result (A-120)];

Var[b; | X]™! = Var[by, | X]™' = (1/6H X, X(X;X2) ' X5 X,

which is nonnegative definite. We conclude that although b, is biased, its variance is
never larger than that of by, (since the inverse of its variance is at least as large).

Suppose, for instance, that X; and X; are each a single column and that the variables
are measured as deviations from their respective means. Then

2 n
Var[b, | X] = ;%, where 511 = Z (xi1 — %1),

i=1
whereas
2
21’ 7 ’ -1/ -1 o
Var[bi, | X] = 0°[x1X1 — X[ X2(X0X2) ™ XX ]| = ————~, (8-8)
S1 (1 - ’12)
where
2 (X'lxz)z
r12 = ’
X|X(X5%)

is the squared sample correlation between x; and x,. The more highly correlated x; and
X, are, the larger is the variance of by ; compared with that of b;. Therefore, it is possible
that b, is a more precise estimator based on the mean-squared error criterion.

The result in the preceding paragraph poses a bit of a dilemma for applied re-
searchers. The situation arises frequently in the search for a model specification. Faced
with a variable that a researcher suspects should be in their model, but which is causing
a problem of collinearity, the analyst faces a choice of omitting the relevant variable or
including it and estimating its (and all the other variables’) coefficient imprecisely. This
presents a choice between two estimators, by and by ». In fact, what researchers usually
do actually creates a third estimator. It is common to include the problem variable pro-
visionally. If its  ratio is sufficiently large, it is retained; otherwise it is discarded. This
third estimator is called a pretest estimator. What is known about pretest estimators is
not encouraging. Certainly they are biased. How badly depends on the unknown pa-
rameters. Analytical results suggest that the pretest estimator is the least precise of the
three when the researcher is most likely to use it. [See Judge et al. (1985).]

8.2.3 INCLUSION OF IRRELEVANT VARIABLES

If the regression model is correctly given by

y=XiB +e¢ 38-9)
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and we estimate it as if (8-2) were correct (i.e., we include some extra variables), then it
might seem that the same sorts of problems considered earlier would arise. In fact, this
case is not true. We can view the omission of a set of relevant variables as equivalent to
imposing an incorrect restriction on (8-2). In particular, omitting X; is equivalent to in-
correctly estimating (8-2) subject to the restriction 8, =0. As we discovered, incorrectly
imposing a restriction produces a biased estimator. Another way to view this error is to
note that it amounts to incorporating incorrect information in our estimation. Suppose,
however, that our error is simply a failure to use some information that is correct.

The inclusion of the irrelevant variables X; in the regression is equivalent to failing
to impose 8, =0 on (8-2) in estimation. But (8-2) is not incorrect; it simply fails to
incorporate 8, = 0. Therefore, we do not need to prove formally that the least squares
estimator of 8 in (8-2) is unbiased even given the restriction; we have already proved it.
We can assert on the basis of all our earlier results that

ﬂl:' [ﬂl]
Eb|X]= = . 8-10
wixi= 5] =4 (8-10)
By the same reasoning, s is also unbiased:
E|l—2% x| =02 (8-11)
n— Kl - K2

Then where is the problem? It would seem that one would generally want to “overfit”
the model. From a theoretical standpoint, the difficulty with this view is that the failure
to use correct information is always costly. In this instance, the cost is the reduced pre-
cision of the estimates. As we have shown, the covariance matrix in the short regression
(omitting X) is never larger than the covariance matrix for the estimator obtained in
the presence of the superfluous variables.! Consider again the single-variable compar-
ison given earlier. If x; is highly correlated with x;, then incorrectly including it in the
regression will greatly inflate the variance of the estimator.

8.2.4 MODEL BUILDING—A GENERAL TO SIMPLE STRATEGY

There has been a shift in the general approach to model building in the last 20 years or so,
partly based on the results in the previous two sections. With an eye toward maintaining
simplicity, model builders would generally begin with a small specification and gradually
build up the model ultimately of interest by adding variables. But, based on the preceding
results, we can surmise that just about any criterion that would be used to decide whether
to add a variable to a current specification would be tainted by the biases caused by
the incomplete specification at the early steps. Omitting variables from the equation
seems generally to be the worse of the two errors. Thus, the simple-to-general approach
to model building has little to recommend it. Building on the work of Hendry [e.g.,
(1995)] and aided by advances in estimation hardware and software, researchers are now
more comfortable beginning their specification searches with large elaborate models

IThere is no loss if X} Xz = 0, which makes sense in terms of the information about X; contained in Xp (here,
none). This situation is not likely to occur in practice, however.
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involving many variables and perhaps long and complex lag structures. The attractive
strategy is then to adopt a general-to-simple, downward reduction of the model to the
preferred specification. Of course, this must be tempered by two related considerations.
In the “kitchen sink” regression, which contains every variable that might conceivably
be relevant, the adoption of a fixed probability for the type I error, say 5 percent
assures that in a big enough model, some variables will appear to be significant, even if
“by accident.” Second, the problems of pretest estimation and stepwise model building
also pose some risk of ultimately misspecifying the model. To cite one unfortunately
common example, the statistics involved often produce unexplainable lag structures in
dynamic models with many lags of the dependent or independent variables.

8.3 CHOOSING BETWEEN NONNESTED MODELS

The classical testing procedures that we have been using have been shown to be most
powerful for the types of hypotheses we have considered.> Although use of these pro-
cedures is clearly desirable, the requirement that we express the hypotheses in the form
of restrictions on the modely = Xg + &,

Hy:RB=q
versus

H, :RB #4q,

can be limiting. Two common exceptions are the general problem of determining which
of two possible sets of regressors is more appropriate and whether a linear or loglinear
model is more appropriate for a given analysis. For the present, we are interested in
comparing two competing linear models:

Hy:y=XB+¢&g (8-12a)
and
Hy:y=7Zy +e¢;. (8-12b)

The classical procedures we have considered thus far provide no means of forming a
preference for one model or the other. The general problem of testing nonnested hy-
potheses such as these has attracted an impressive amount of attention in the theoretical
literature and has appeared in a wide variety of empirical applications.®

Before turning to classical- (frequentist-) based tests in this setting, we should note
that the Bayesian approach to this question might be more intellectually appealing,
Our procedures will continue to be directed toward an objective of rejecting one model
in favor of the other. Yet, in fact, if we have doubts as to which of two models is
appropriate, then we might well be convinced to concede that possibly neither one is
really “the truth.” We have rather painted ourselves into a corner with our “left or right”

28ee, for example, Stuart and Ord (1989, Chap. 27).

3Recent surveys on this subject are White (1982a, 1983), Gourieroux and Monfort (1994), McAleer (1995),
and Pesaran and Weeks (2001). McAleer’s survey tabulates an array of applications, while Gourieroux and
Monfort focus on the underlying theory. ‘
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approach. The Bayesian approach to this question treats it as a problem of comparing
the two hypotheses rather than testing for the validity of one over the other. We enter
our sampling experiment with a set of prior probabilities about the relative merits of the
two hypotheses, which is summarized in a “prior odds ratio,” Py, = Prob[ Hy]/Prob[ H1].
After gathering our data, we construct the Bayes factor, which summarizes the weight
of the sample evidence in favor of one model or the other. After the data have been
analyzed, we have our “posterior odds ratio,”

Py | data = Bayes factor x Py;.

The upshot is that ex post, neither model is discarded; we have merely revised our
assessment of the comparative likelihood of the two in the face of the sample data.
Some of the formalities of this approach are discussed in Chapter 16.

8.3.1 TESTING NONNESTED HYPOTHESES

A useful distinction between hypothesis testing as discussed in the preceding chapters
and model selection as considered here will turn on the asymmetry between the null
and alternative hypotheses that is a part of the classical testing procedure.* Since, by
construction, the classical procedures seek evidence in the sample to refute the “null”
hypothesis, how one frames the null can be crucial to the outcome. Fortunately, the
Neyman-Pearson methodology provides a prescription; the null is usually cast as the
narrowest model in the set under consideration. On the other hand, the classical pro-
cedures never reach a sharp conclusion. Unless the significance level of the testing
procedure is made so high as to exclude all alternatives, there will always remain the
possibility of a type one error. As such, the null is never rejected with certainty, but
only with a prespecified degree of confidence. Model selection tests, in contrast, give
the competing hypotheses equal standing. There is no natural null hypothesis. However,
the end of the process is a firm decision—in testing (8-12a, b), one of the models will be
rejected and the other will be retained; the analysis will then proceed in the framework
of that one model and not the other. Indeed, it cannot proceed until one of the models
is discarded. It is common, for example, in this new setting for the analyst first to test
with one model cast as the null, then with the other. Unfortunately, given the way the
tests are constructed, it can happen that both or neither model is rejected; in either case,
further analysis is clearly warranted. As we shall see, the science is a bit inexact.

The earliest work on nonnested hypothesis testing, notably Cox (1961, 1962), was
done in the framework of sample likelihoods and maximum likelihood procedures.
Recent developments have been structured around a common pillar labeled the en-
compassing principle [Mizon and Richard (1986)]. In the large, the principle directs
attention to the question of whether a maintained model can explain the features of
its competitors, that is, whether the maintained model encompasses the alternative.
Yet a third approach is based on forming a comprehensive model which contains both
competitors as special cases. When possible, the test between models can be based,
essentially, on classical (-like) testing procedures. We will examine tests that exemplify
all three approaches.

4See Granger and Pesaran (2000) for discussion.
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8.3.2 AN ENCOMPASSING MODEL

The encompassing approach is one in which the ability of one model to explain features
of another is tested. Model 0 “encompasses” Model 1 if the features of Model 1 can
be explained by Model 0 but the reverse is not true.’ Since Hy cannot be written as a
restriction on H;, none of the procedures we have considered thus far is appropriate.
One possibility is an artificial nesting of the two models. Let X be the set of variables in
X that are not in Z, define Z likewise with respect to X, and let W be the variables that
the models have in common. Then H, and H; could be combined in a “supermodel”:

y=XB+Zp+Ws+e.

In principle, H) is rejected if it is found that = 0 by a conventional F test, whereas Hy
is rejected if it is found that B = 0. There are two problems with this approach. First,
§ remains a mixture of parts of # and y, and it is not established by the F test that either
of these parts is zero. Hence, this test does not really distinguish between Hy and Hy;
it distinguishes between Hj and a hybrid model. Second, this compound model may
have an extremely large number of regressors. In a time-series setting, the problem of
collinearity may be severe.

Consider an alternative approach. If Hy is correct, then y will, apart from the ran-
dom disturbance €, be fully explained by X. Suppose we then attempt to estimate y
by regression of y on Z. Whatever set of parameters is estimated by this regression,
say ¢, if Hy is correct, then we should estimate exactly the same coefficient vector if we
were to regress XB on Z, since & is random noise under Hy. Since B must be estimated,
suppose that we use Xb instead and compute ¢;. A test of the proposition that Model 0
“encompasses” Model 1 would be a test of the hypothesis that Efc — ¢] = 0. It is
straightforward to show [see Davidson and MacKinnon (1993, pp. 384-387)] that the
test can be carried out by using a standard F test to test the hypothesis that y; = 0 in
the augmented regression,

y=Xﬂ+Z1y1+e1,

where Z, is the variables in Z that are not in X.

8.3.3 COMPREHENSIVE APPROACH—THE J TEST

The underpinnings of the comprehensive approach are tied to the density function as
the characterization of the data generating process. Let fy(y; | data, ) be the assumed
density under Model 0 and define the alternative likewise as fi(y; | data, B1). Then, a
comprehensive model which subsumes both of these is

[ folyi | data, BOI" [ fi(yi | data, B)]*
c l d £ k) = N .
Je(yi | data. fo. B Jeange of y, Lo | data, Bo)|'*[ fi(yi | data, B1)) dy;

Estimation of the comprehensive model followed by a test of A = 0 or 1 is used to assess
the validity of Model 0 or 1, respectively.5

5See Deaton (1982), Dastoor (1983), Gourieroux, et al. (1983, 1995) and, especially, Mizon and Richard
(1986).

6See Section 21.4.4c for an application to the choice of probit or logit model for binary choice suggested by
Silva (2001). S .
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The J test proposed by Davidson and MacKinnon (1981) can be shown [see Pesaran
and Weeks (2001)] to be an application of this principle to the linear regression model.
Their suggested alternative to the preceding compound model is

y=(1—WXB+AZy) +e.

In this model, a test of A = 0 would be a test against H;. The problem is that A cannot
be separately estimated in this model; it would amount to a redundant scaling of the
regression coefficients. Davidson and MacKinnon’s J test consists of estimating y by a
least squares regression of y on Z followed by a least squares regression of y on X and
Zy, the fitted values in the first regression. A valid test, at least asymptotically, of ; is
to test Hy : » = 0. If Hy is true, then plim 4 = 0. Asymptotically, the ratio A/se(}) (i.e.,
the usual 7 ratio) is distributed as standard normal and may be referred to the standard
table to carry out the test. Unfortunately, in testing Hy versus H; and vice versa, all
four possibilities (reject both, neither, or either one of the two hypotheses) could occur.
This issue, however, is a finite sample problem. Davidson and MacKinnon show that
as n — oo, if Hy is true, then the probability that i will differ significantly from zero
approaches 1. :

Example 8.2 J Test for a Consumption Function
Gaver and Geisel (1974) propose two forms of a consumption function:

Ho:Ct = 1+ B2Yr + BaYio1 + ear
and
Hi:CG =y1+ Y + v3Cr 1 + et

The first model states that consumption responds to changes in income over two periods,
whereas the second states that the effects of changes in income on consumption persist
for many periods. Quarterly data on aggregate U.S. real consumption and real disposable
income are given in Table F5.1. Here we apply the J test to these data and the two proposed
specifications. First, the two models are estimated separately (using observations 1950.2—-
2000.4). The least squares regression of C on a constant, Y, lagged Y, and the fitted values
from the second model produces an estimate of A of 1.0145 with a ¢ ratio of 62.861. Thus,
Hg should be rejected in favor of H4. But reversing the roles of Hy and H, we obtain an
estimate of A of —10.677 with a t ratio of —7.188. Thus, H, is rejected as well.”

8.3.4 THE COX TEST?

Likelihood ratio tests rely on three features of the density of the random variable of
interest. First, under the null hypothesis, the average log density of the null hypothesis
will be less than under the alternative—this is a consequence of the fact that the null
model is nested within the alternative. Second, the degrees of freedom for the chi-
squared statisticis the reduction in the dimension of the parameter space that is specified
by the null hypothesis, compared to the alternative. Third, in order to carry out the test,
under the null hypothesis, the test statistic must have a known distribution which is
free of the model parameters under the alternative hypothesis. When the models are

TFor related discussion of this possibility, see McAleer, Fisher, and Volker (1982).

8The Cox test is based upon the likelihood ratio statistic, which will be developed in Chapter 17. The results
for the linear regression model, however, are based on sums of squared residuals, and therefore, rely on
nothing more than least squares, which is already familiar.
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nonnested, none of these requirements will be met. The first need not hold at all. With
regard to the second, the parameter space under the null model may well be larger
than (or, at least the same size) as under the alternative. (Merely reversing the two
models does not solve this problem. The test must be able to work in both directions.)
Finally, because of the symmetry of the null and alternative hypotheses, the distributions
of likelihood based test statistics will generally be functions of the parameters of the
alternative model. Cox’s (1961, 1962) analysis of this problem produced a reformulated
test statistic that is based on the standard normal distribution and is centered at zero.’

Versions of the Cox test appropriate for the linear and nonlinear regression models
have been derived by Pesaran (1974) and Pesaran and Deaton (1978). The latter present
a test statistic for testing linear versus loglinear models that is extended in Aneuryn-
Evans and Deaton (1980). Since in the classical regression model the least squares
estimator is also the maximum likelihood estimator, it is perhaps not surprising that
Davidson and MacKinnon (1981, p. 789) find that their test statistic is asymptotically
equal to the negative of the Cox—Pesaran and Deaton statistic.

The Cox statistic for testing the hypothesis that X is the correct set of regressors
and that Z is not is :

2 2

n Ky n s
=" z =_1In|-Z|, 8-13
=3 s§+<1/n>b'x'Msz} 2" L%x] 5

where
Mz =1-Z(Z'7)"'Z,
My =1 - X(X'X) X/,
b = (X'X)"'Xy.
52 = ejyez/n = mean-squared residual in the regression of y on Z,
5% = eyex/n = mean-squared residual in the regression of y on X,
s3x = 5x + B’ X'MzXb/n.

The hypothesis is tested by comparing

cn cn

1= {ESt.\/211‘[6()1]}1/2 N \/ 2

(8-14)

X X' MzMxMzXb

Szx
to the critical value from the standard normal table. A large value of g is evidence
against the null hypothesis (Hp).

The Cox test appears to involve an impressive amount of matrix algebra. But the
algebraic results are deceptive. One needs only to compute linear regressions and re-
trieve fitted values and sums of squared residuals. The following does the first test. The
roles of X and Z are reversed for the second.

1. Regressyon X to obtainb and §x = Xb, ex =y — Xb, s,z( = exex/n.
2. RegressyonZtoobtaindand yz =7Zd, ez =y — Zd, s% = ezez/n.

9See Pesaran and Weeks (2001) for some of the formalities of these results.
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3. Regress §x on Z to obtain dx and ez x = yx — Zdx = MzXb, e} yezx =
b’X'MzXb. :
4. Regress ez x on X and compute residuals ex zx. €k zxex.zx = b’ X'MzMxMzXb.
5. Compute sy = 5% + €}, xezx/n.
_n i _ Si(e&'zxex.zx) _ o
6. Compute ¢y = 3 log o v =g =

Therefore, the Cox statistic can be computed simply by computing a series of least
squares regressions.

Example 8.3 Cox Test for a Consumption Function

We continue the previous example by applying the Cox test to the data of Example 8.2. For
purposes of the test, let X =[i y y 4] and Z = [i y c_4]. Using the notation of (8-13) and
(8-14), we find that

s? = 7,556.657,
sz = 456.3751,
b’X'MzXb = 167.50707,
b’X'MzMxMzXb = 2.61944,
s2x = 7556.657 + 167.50707/203 = 7,557.483.
Thus,

203 <456.3751
Co1 = In

2 7,557.483) = ~284.908

and
7,556.657(2.61944)

Est. Var[coi] = 557 4832

= 0.00034656.

Thus, g = —15,304.281. On this basis, we reject the hypothesis that X is the correct set of
regressors. Note in the previous example that we reached the same conclusion based on a
t ratio of 62.861. As expected, the result has the opposite sign from the corresponding J
statistic in the previous example. Now we reverse the roles of X and Z in our calculations.
Letting d denote the least squares coefficients in the regression of consumption on Z, we
find that

d'Z’MyZd = 1,418,985.185,
d'ZMxMzMx2Zd = 22,189.811,
s2, = 456.3751 + 1,418,985.185/203 = 7446.4499.
Thus,

203 [ 7,556.657
Go="5 I"(7,446.4499) = 1491

and

456.3751(22,189.811)
7,446.44992

This computation produces a value of g = 3.489, which is roughly equal (in absolute value) to

its counterpart in Example 8.2, —7.188. Since —2.595 is less than the 5 percent critical value

of to —1.96, we once again reject the hypothesis that Z is the preferred set of regressors
though the results do strongly favor Z in qualitative terms.

Est. Varicyo] = = 0.18263.
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Pesaran and Hall (1988) have extended the Cox test to testing which of two non-
nested restricted regressions is preferred. The modeling framework is

Hy: y =XoBo+ €0, Var[eg|Xo] =031, subject to Rofy = qo
Hy: y=X;B,+e€1, Varle;|Xi]=0%1, subjecttoR(f; =q;.

Like its counterpart for unrestricted regressions, this Cox test requires a large amount
of matrix algebra. However, once again, it reduces to a sequence of regressions, though
this time with some unavoidable matrix manipulation remaining. Let

G, = X X)™!' - (XIX) 'RIR:(XX)'R]IR,(XX)™, i=0,1,

and T; = X;G;X], m; = rank(R;), k; = rank(X;), h; = k; — m; and d; = n — h; where n
is the sample size. The following steps produce the needed statistics:

1. Compute e; = the residuals from the restricted regression, i = 0, 1.

2. Compute ey by computing the residuals from the restricted regression of y — e
on X;. Compute ey, likewise by reversing the subscripts.

3. Compute ey as the residuals from the restricted regression of y — ejp on Xy and
e119 likewise by reversing the subscripts.
Let v;, v;; and v; 4 denote the sums of squared residuals in Steps 1, 2, and 3
and let s? = ele;/d;.
4. Compute trace (Bf) = hy — trace[(ToT1)?] — {hy — trace[(ToTl)Z]}2 /(n— ho) and
trace (B?) likewise by reversing subscripts.
5. Compute s3; = (v + 53 trace[I — To — Ty + ToT1]) and s, likewise.

The authors propose several statistics. A Wald test based on Godfrey and Pesaran (1983)
is based on the difference between an estimator of o and the probability limit of this
estimator assuming that H is true

Wo = V/n(v1 — vo — v10) /\/4vov100-

Under the null hypothesis of Model 0, the limiting distribution of W is standard normal.
An alternative statistic based on Cox’s likelihood approach is

No = (n/2)In(s3/s3y) /\/ 4vi00s3/ (s3)

Example 8.4 Cox Test for Restricted Regressions
The example they suggest is two competing models for expected inflation, P?, based on
commonly used lag structures involving lags of P and current lagged values of actual infla-
tion, F;
(Regressive): PF = P+ 61(P; — P—1) + 62(P—1 — Pr_2) + €0t
(Adaptive) PP = P7 -+ (P — Pfy) +ha(Pt — PE,) + e
By formulating these models as

Ve =PB1Pey+ BoPE o+ P+ BaPrct + Bs Pz + &,
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S They show that the hypotheses are
Ho: B1=p2=0, Bas+Ba+ps=1
Hyt Br+Bs=1, B2+B1=0,8=0.

Pesaran and Hall’s analysis was based on quarterly data for British manufacturing from 1972
to 1981. The data appear in the Appendix to Pesaran (1987) and are reproduced in Table F8.1.
Using their data, the computations listed before produce the following results:

Wo: Nullis Hg; —3.887, Nullis H4;—-0.134
No: Nullis Ho; —2.437, Nullis H4;-0.032.

These results fairly strongly support Model 1 and lead to rejection of Model 0.1°

8.4 MODEL SELECTION CRITERIA

The preceding discussion suggested some approaches to model selection based on
nonnested hypothesis tests. Fit measures and testing procedures based on the sum of
squared residuals, such as R’ and the Cox test, are useful when interest centers on
the within-sample fit or within-sample prediction of the dependent variable. When the
model building is directed toward forecasting, within-sample measures are not neces-
sarily optimal. As we have seen, R? cannot fall when variables are added to a model,
so there is a built-in tendency to overfit the model. This criterion may point us away
from the best forecasting model, because adding variables to a model may increase the
variance of the forecast error (see Section 6.6) despite the improved fit to the data. With
this thought in mind, the adjusted R?, ‘ ‘

RP=1-

n—1 ) n—1 ee
has been suggested as a fit measure that appropriately penalizes the loss of degrees of
freedom that result from adding variables to the model. Note that R? may fall when
a variable is added to a model if the sum of squares does not fall fast enough. (The
applicable result appears in Theorem 3.7; R? does not rise when a variable is added to
a model unless the ¢ ratio associated with that variable exceeds one in absolute value.)
The adjusted R’ has been found to be a preferable fit measure for assessing the fit of
forecasting models. [See Diebold (1998b, p. 87), who argues that the simple R? has
a downward bias as a measure of the out-of-sample, one-step-ahead prediction error
variance.]

The adjusted R? penalizes the loss of degrees of freedom that occurs when a model
is expanded. There is, however, some question about whether the penalty is sufficiently
large to ensure that the criterion will necessarily lead the analyst to the correct model
(assuming that it is among the ones considered) as the sample size increases. Two alter-
native fit measures that have seen suggested are the Akaike information criterion,

AIC(K) =s;(1 = R)e*/” (8-16)
1Qur results differ somewhat from Pesaran and Hall’s. For the first row of the table, they reported

(—2.180, —1.690) and for the second, (—2.456, —1.907). They reach the same conclusion, but the numbers
do differ substantively. We have been unable to resolve the difference.
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and the Schwartz or Bayesian information criterion,
BIC(K) = s(1 — RH)n/". (8-17)

(There is no degrees of freedom correction in s2.) Both measures improve (decline) as
R? increases, but, everything else constant, degrade as the model size increases. Like
R?, these measures place a premium on achieving a given fit with a smaller number
of parameters per observation, K/n. Logs are usually more convenient; the measures
reported by most software are

e\ 2K

AIC(K) = log(2> + 2 (8-18)
n n o
e\ Kl

BIC(K) = 1og(2) + _Zg—”. (8-19)
n

Both prediction criteria have their virtues, and neither has an obvious advantage over
the other. [See Diebold (1998b, p. 90).] The Schwarz criterion, with its heavier penalty
for degrees of freedom lost, will lean toward a simpler model. All else given, simplicity
does have some appeal.

8.5 SUMMARY AND CONCLUSIONS

This is the last of seven chapters that we have devoted specifically to the most heavily

‘ used tool in econometrics, the classical linear regression model. We began in Chapter 2
with a statement of the regression model. Chapter 3 then described computation of
the parameters by least squares—a purely algebraic exercise. Chapters 4 and 5 reinter-
preted least squares as an estimator of an unknown parameter vector, and described
the finite sample and large sample characteristics of the sampling distribution of the
estimator. Chapters 6 and 7 were devoted to building and sharpening the regression
model, with tools for developing the functional form and statistical results for testing
hypotheses about the underlying population. In this chapter, we have examined some
broad issues related to model specification and selection of a model among a set of
competing alternatives. The concepts considered here are tied very closely to one of
the pillars of the paradigm of econometrics, that underlying the model is a theoretical
construction, a set of true behavioral relationships that constitute the model. It is only
on this notion that the concepts of bias and biased estimation and model selection make
any sense—"bias” as a concept can only be described with respect to some underlying
“model” against which an estimator can be said to be biased. That is, there must be a
yardstick. This concept is a central result in the analysis of specification, where we con-
sidered the implications of underfitting (omitting variables) and overfitting (including
superfluous variables) the model. We concluded this chapter (and our discussion of the
classical linear regression model) with an examination of procedures that are used to
choose among competing model specifications.
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Key Terms and Concepts

e Adjusted R-squared o J test ¢ Schwarz criterion
¢ Akaike criterion ¢ Mean squared error e Simple-to-general
¢ Biased estimator ¢ Model selection e Specification analysis
¢ Comprehensive model ¢ Nonnested models o Stepwise model building
» Cox test ¢ Omission of relevant
¢ Encompassing principle variables
» General-to-simple strategy e Omitted variable formula
e Inclusion of superfluous e Prediction criterion
variables e Pretest estimator
Exercises
1. Suppose the true regression model is given by (8-2). The result in (8-4) shows that if

either P, ; is nonzero or 8, is nonzero, then regression of y on X; alone produces a
biased and inconsistent estimator of 8. Suppose the objective is to forecast y, not to
estimate the parameters. Consider regression of y on X, alone to estimate 8; with
by (which is biased). Is the forecast of y computed using X;b; also biased? Assume
that E£[X; | X;]is a linear function of X;. Discuss your findings generally. What are
the implications for prediction when variables are omitted from a regression?
Compare the mean squared errors of by and b; ; in Section 8.2.2. (Hint: The compar-
ison depends on the data and the model parameters, but you can devise a compact
expression for the two quantities.)

The J test in Example 8.2 is carried out using over 50 years of data. It is optimistic
to hope that the underlying structure of the economy did not change in 50 years.
Does the result of the test carried out in Example 8.2 persist if it is based on data
only from 1980 to 2000? Repeat the computation with this subset of the data.

The Cox test in Example 8.3 has the same difficulty as the J test in Example 8.2. The
sample period might be too long for the test not to have been affected by underlying
structural change. Repeat the computations using the 1980 to 2000 data.



9

NONLINEAR REGRESSION
MODELS

9.1 INTRODUCTION

Although the linear model is flexible enough to allow great variety in the shape of the
regression, it still rules out many useful functional forms. In this chapter, we examine
regression models that are intrinsically nonlinear in their parameters. This allows a
much wider range of functional forms than the linear model can accommodate.!

9.2 NONLINEAR REGRESSION MODELS

The general form of the nonlinear regression model is
yi = h(x, B) + €. 9D
The linear model is obviously a special case. Moreover, some models which appear to
be nonlinear, such as
y = efoxl et
become linear after a transformation, in this case after taking logarithms. In this chapter,

we are interested in models for which there is no such transformation, such as the ones
in the following examples.

Example 9.1 CES Production Function
In Example 7.5, we examined a constant elasticity of substitution production function model:

Iny=Iny — ZInBK=" + (1 = )L ] + .
p

No transformation renders this equation linear in the parameters. We did find, however, that
a linear Taylor series approximation to this function around the point p = 0 produced an
intrinsically linear equation that could be fit by least squares. Nonetheless, the true model is
nonlinear in the sense that interests us in this chapter.

Example 9.2 Translog Demand System
Christensen, Jorgenson, and Lau (1975), proposed the translog indirect utility function for a
consumer allocating a budget among K commodities:

K K K
~InV =+ Y An(p/M) + DY valn(pe/M) In(pr/M)

k=1 k=1 1=1

1A complete discussion of this subject can be found in Amemiya (1985). Other important references are
Jennrich (1969), Malinvaud (1970), and especially Goldfeld and Quandt (1971, 1972). A very lengthy author-
itative treatment is the text by Davidson and MacKinnon (1993).

162
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where V is indirect utility, py is the price for the kth commodity and M is income. Roy’s identity
applied to this logarithmic function produces a budget share equation for the kth commodity
that is of the form

K
+ 35wy In(p; /M
Skz_aan/alnpk: B ;(_H’k; (p; /M) te k=1, K.
ainv/ainM g, 4+ S :/.=1 ymi In(p; /M)

where By = Ek Bx and yu; = Zk vk - No transformation of the budget share equation pro-
duces a linear model. This is an intrinsically nonlinear regression model. (It is also one among
a system of equations, an aspect we will ignore for the present.)

9.2.1 ASSUMPTIONS OF THE NONLINEAR REGRESSION MODEL

We shall require a somewhat more formal definition of a nonlinear regression model.
Sufficient for our purposes will be the following, which include the linear model as the
special case noted earlier. We assume that there is an underlying probability distribution,
or data generating process (DGP) for the observable y; and a true parameter vector, 8,
which is a characteristic of that DGP. The following are the assumptions of the nonlinear
regression model:

1. Functional form: The conditional mean function for y; given x; is .
Elyviix]=hx,B8), i=1,...,n,

where h(x;, B) is a twice continuously differentiable function.

2. Identifiability of the model parameters: The parameter vector in the model is iden-
tified (estimable) if there is no nonzero parameter 8°# g such that A(x;, 8% =
h(x;, B) for all x;. In the linear model, this was the full rank assumption, but the
simple absence of “multicollinearity” among the variables in x is not sufficient to
produce this condition in the nonlinear regression model. Note that the model given
in Example 9.2 is not identified. If the parameters in the model are all multiplied
by the same nonzero constant, the same conditional mean function results. This
condition persists even if all the variables in the model are linearly independent.
The indeterminacy was removed in the study cited by imposing the normalization
Bu=1.

3. Zero mean of the disturbance: It follows from Assumption 1 that we may write

yi = h(x;, B) +&;.

where E[g; | A(x;, 8)] = 0. This states that the disturbance at observation i is uncor-
related with the conditional mean function for all observations in the sample. This
is not quite the same as assuming that the disturbances and the exogenous variables
are uncorrelated, which is the familiar assumption, however. We will return to this
point below.

4. Homoscedasticity and nonautocorrelation: Asin the linear model, we assume con-
ditional homoscedasticity,

E[e?|h(x;.B), j=1,...,n] =0? afinite constant, 9-2)
and nonautocorrelation

E[eisjlh(xi,ﬂ),h_(xj,ﬂ), i=1...,n=0 forallj+#i.
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5. Data generating process: The data generating process for x; is assumed to be a well
behaved population such that first and second moments of the data can be assumed
to converge to fixed, finite population counterparts. The crucial assumption is that
the process generating x; is strictly exogenous to that generating ¢;. The data on x;
are assumed to be “well behaved.”

6. Underlying probability model: There is a well defined probability distribution gen-
erating &;. At this point, we assume only that this process produces a sample
of uncorrelated, identically (marginally) distributed random variables ; with mean
0 and variance o conditioned on A(x;, 8). Thus, at this point, our statement of the
model is semiparametric. (See Section 16.3.) We will not be assuming any partic-
ular distribution for ¢;. The conditional moment assumptions in 3 and 4 will be
sufficient for the results in this chapter. In Chapter 17, we will fully parameterize
the model by assuming that the disturbances are normally distributed. This will
allow us to be more specific about certain test statistics and, in addition, allow some
generalizations of the regression model. The assumption is not necessary here.

9.2.2 THE ORTHOGONALITY CONDITION
AND THE SUM OF SQUARES

Assumptions 1 and 3 imply that E[e; | A(x;, )] =0. In the lincar model, it follows,
because of the linearity of the conditional mean, that g; and x;, itself, are uncorrelated.
However, uncorrelatedness of &; with a particular nonlinear function of x; (the regression
function) does not necessarily imply uncorrelatedness with x;, itself nor, for that matter,
with other nonlinear functions of x;. On the other hand, the results we will obtain below
for the behavior of the estimator in this model are couched not in terms of x; but in
terms of certain functions of x; (the derivatives of the regression function), so, in point
of fact, E [¢ | X] = 0 is not even the assumption we need.

The foregoing is not a theoretical fine point. Dynamic models, which are very com-
mon in the contemporary literature, would greatly complicate this analysis. If it can be
assumed that g; is strictly uncorrelated with any prior information in the model, includ-
ing previous disturbances, then perhaps a treatment analogous to that for the linear
model would apply. But the convergence results needed to obtain the asymptotic prop-
erties of the estimator still have to be strengthened. The dynamic nonlinear regression
modelis beyond the reach of our treatment here. Strict independence of ¢; and x; would
be sufficient for uncorrelatedness of ¢; and every function of x;, but, again, in a dynamic
model, this assumption might be questionable. Some commentary on this aspect of the
nonlinear regression model may be found in Davidson and MacKinnon (1993).

If the disturbances in the nonlinear model are normally distributed, then the log of
the normal density for the ith observation will be

Inf(yi %, B,0%) = —(1/2)[In27 +Ino” + £/ /5?]. 9-3)

For this special case, we have from item D.2 in Theorem 17.2 (on maximum likelihood
estimation), that the derivatives of the log density with respect to the parameters have
mean zero. That is,

31nf(yi|xi,ﬂ,02)} _ E[l (8h(xi,ﬂ))
B

3B — 8,':| =0, 9-4)

ol
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so, in the normal case, the derivatives and the disturbances are uncorrelated. Whether
this can be assumed to hold in other cases is going to be model specific, but under
reasonable conditions, we would assume so. [See Ruud (2000, p. 540).]

In the context of the linear model, the orthogonality condition E [x;¢;] = 0 produces
least squares as a GMM estimator for the model. (See Chapter 18.) The orthogonality
condition is that the regressors and the disturbance in the model are uncorrelated.
In this setting, the same condition applies to the first derivatives of the conditional
mean function. The result in (9-4) produces a moment condition which will define the
nonlinear least squares estimator as a GMM estimator.

Example 9.3 First-Order Conditions for a Nonlinear Model
The first-order conditions for estimating the parameters of the nonlinear model,

Vi = B1+ €™+,
by nonlinear least squares [see (9-10)] are

3S(b) Z” .

ab, =—i=1 [y/—b1—bzeb3’]=0,
3S(b) . % ba
b, 2l mbibe]e =0,
3S(b .

These equations do not have an explicit solution.

Conceding the potential for ambiguity, we define a nonlinear regression model at
this point as follows.

DEFINITION 9.1 Nonlinear Regression Model

A nonlinear regression model is one for which the first-order conditions for least
squares estimation of the parameters are nonlinear functions of the parameters.

Thus, nonlinearity is defined in terms of the techniques needed to estimate the param-
eters, not the shape of the regression function. Later we shall broaden our definition to
include other techniques besides least squares.

9.2.3 THE LINEARIZED REGRESSION

The nonlinear regression model is y = h(x, B) + ¢. (To save some notation, we have
dropped the observation subscript.) The sampling theory results that have been obtained
for nonlinear regression models are based on a linear Taylor series approximation to
h(x, B) at a particular value for the parameter vector, 8%

K

0
hx By~ hix g + 3 XD

— 89, 9-5)
£ 3'31(() (.Bk ﬂk) \ & (
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This form of the equation is called the linearized regression model. By collecting terms,
we obtain

K ol 0h(x, B° K (ohx, B°
h(x, B) ~ [h(x, 8 - Zﬂf(—%}#)} + Zm(—ﬁﬂ). ©9-6)
k

0
k=1 k=1 By

Let x equal the kth partial derivative,> dk(x, 8°)/3BY. For a given value of g°, x{ is a
function only of the data, not of the unknown parameters. We now have

K K
h(x, B) ~ [h“ - Zx;?ﬂ;?} +) Xbr
k=1 k=1
which may be written
h(x,B) ~ h° —x"g% + x"B,
which implies that
yRh —x"g +x"B + .
By placing the known terms on the left-hand side of the equation, we obtain a linear
equation:
YW=y—h+x"p" =x"f+¢". -7

Note that £° contains both the true disturbance, ¢, and the error in the first order Taylor
series approximation to the true regression, shown in (9-6). That is,

K K
=g+ [h(x, B) - {ho =) B+ }:x,eﬁk}] : 9-8)
k=1 k=1

Since all the errors are accounted for, (9-7) is an equality, not an approximation. With
a value of g° in hand, we could compute y° and x” and then estimate the parameters of
(9-7) by linear least squares. (Whether this estimator is consistent or not remains to be
seen.)

Example 9.4 Linearized Regression
For the model in Example 9.3, the regressors in the linearized equation would be

h(.
X} = : (o) =1,

3P
x3 = ?h_(('))_=eﬂg",

B,

ah(.) 0
0 0, A8 X
X3 = ——= = Pp,xe"s",
3 319;9 ﬂz

With a set of values of the parameters g°,
Y =y —h(x. 81,53, B3) + BX] + B3xg + B3x3

could be regressed on the three variables previously defined to estimate 81, 8>, and gs.

ZYou should verity that for the linear regression model, these derivatives are the independent variables.
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9.2.4 LARGE SAMPLE PROPERTIES OF THE NONLINEAR
LEAST SQUARES ESTIMATOR

Numerous analytical results have been obtained for the nonlinear least squares esti-
mator, such as consistency and asymptotic normality. We cannot be sure that nonlinear
least squares is the most efficient estimator, except in the case of normally distributed
disturbances. (This conclusion is the same one we drew for the linear model.) But, in
the semiparametric setting of this chapter, we can ask whether this estimator is optimal
in some sense given the information that we do have; the answer turns out to be yes.
Some examples that follow will illustrate the points.

It is necessary to make some assumptions about the regressors. The precise require-
ments are discussed in some detail in Judge et al. (1985), Amemiya (1985), and Davidson
and MacKinnon (1993). In the linear regression model, to obtain our asymptotic results,
we assume that the sample moment matrix (1/7)X’'X converges to a positive definite
matrix Q. By analogy, we impose the same condition on the derivatives of the regression
function, which are called the pseudoregressors in the linearized model when they are
computed at the true parameter values. Therefore, for the nonlinear regression model,
the analog to (5-1) is

S 1 (3hxi. Bo)\ (9h(xi, B))\ _ y0 ]
phmnXX—phmn;< . )( - >_Q, ©-9)

where QU is a positive definite matrix. To establish consistency of b in the linear model,
we required plim(1/n)X’e = 0. We will use the counterpart to this for the pseudore-
gressors:

R
plim p ;x?si =0.

This is the orthogonality condition noted earlier in (5-4). In particular, note that orthog-
onality of the disturbances and the data is not the same condition. Finally, asymptotic
normality can be established under general conditions if

1 n
«/_ﬁ Zx?si BCN N[O,UZQO].
i=1

With these in hand, the asymptotic properties of the nonlinear least squares estimator
have been derived. They are, in fact, essentially those we have already seen for the
linear model, except that in this case we place the derivatives of the linearized function
evaluated at 8, X’ in the role of the regressors. [Amemiya (1985).]

The nonlinear least squares criterion function is

I O S B .
S(b)—zlz:lj[y, h(x;, b)] —zgei, (9-10)

where we have inserted what will be the solution value, b. The values of the parameters
that minimize (one half of) the sum of squared deviations are the nonlinear least squares
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estimators. The first-order conditions for a minimum are

. dh(xi, b
) == > i — hx, W] o =

i=1

0. (9-11)

In the linear model of Chapter 2, this produces a set of linear equations, the normal
equations (3-4). But in this more general case, (9-11) is a set of nonlinear equations that
do not have an explicit solution. Note that o is not relevant to the solution [nor was it
in (3-4)]. At the solution,

gb) = —X"e =0,

which is the same as (3-12) for the linear model.
Given our assumptions, we have the following general results:

THEOREM 9.1 Consistency of the Nonlinear Least
Squares Estimator
If the following assumptions hold:

a. The parameter space containing B is compact (has no gaps or nonconcave
regions),

b. For any vector ﬂo in that parameter space, plim 1/n)SB°) = q(ﬁo), a con-
tinuous and differentiable function,

C q(ﬁo) has a unique minimum at the true parameter vector, B,

then, the nonlinear least squares estimator defined by (9-10) and (9-11) is consis-
tent. We will sketch the proof, then consider why the theorem and the proof differ
as they do from the apparently simpler counterpart for the linear model. The proof,
notwithstanding the underlying subtleties of the assumptions, is straightforward.
The estimator, say, b" minimizes (1/m)S(B°). If (1/m)S(B") is minimized for every
n, then it is minimized by b" as n increases without bound. We also assumed that
the minimizer of q(B°) is uniquely B. If the minimum value of plim (1/n)S(8%)
equals the probability limit of the minimized value of the sum of squares, the
theorem is proved. This equality is produced by the continuity in assumption b.

R

;;:E
|

In the linear model, consistency of the least squares estimator could be established
based on plim(1/n)X’X = Q and plim(1/n)X’e = 0. To follow that approach here, we
would use the linearized model, and take essentially the same result. The loose end
in that argument would be that the linearized model is not the true model, and there
remains an approximation. In order for this line of reasoning to be valid, it must also be
either assumed or shown that plim(1/n)X"§ = 0 where §; = h(x;, 8) minus the Taylor
series approximation. An argument to this effect appears in Mittelhammer et al. (2000,
p. 190-191).

IR
EEAN N
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THEOREM 9.2 Asymptotic Normality of the Nonlinear
% Least Squares Estimator
If the pseudoregressors defined in (9-3) are “well behaved,” then

a 02
b~N [ﬁ, ——(QO)‘I} ,
n
where
1
Q' = plim—X"X".
n

The sample estimate of the asymptotic covariance matrix is

Est.Asy. Var[b] = 6%(X"X% L. 9-12)

Asymptotic efficiency of the nonlinear least squares estimator is difficult to establish
without a distributional assumption. There is an indirect approach that is one possibility.
The assumption of the orthogonality of the pseudoregressors and the true disturbances
implies that the nonlinear least squares estimator is a GMM estimator in this context.
With the assumptions of homoscedasticity and nonautocorrelation, the optimal weight-
ing matrix is the one that we used, which is to say that in the class of GMM estimators
for this model, nonlinear least squares uses the optimal weighting matrix. As such, it is
asymptotically efficient.

The requirement that the matrix in (9-9) converges to a positive definite matrix
implies that the columns of the regressor matrix X" must be linearly independent. This
identification condition is analogous to the requirement that the independent variables
inthe linear model be linearly independent. Nonlinear regression models usually involve
several independent variables, and at first blush, it might seem sufficient to examine the
data directly if one is concerned with multicollinearity. However, this situation is not
the case. Example 9.5 gives an application.

9.2.5 COMPUTING THE NONLINEAR LEAST SQUARES ESTIMATOR

Minimizing the sum of squares is a standard problem in nonlinear optimization that can
be solved by a number of methods. (See Section E.6.) The method of Gauss-Newton
is often used. In the linearized regression model, if a value of 8° is available, then the
linear regression model shown in (9-7) can be estimated by linear least squares. Once
a parameter vector is obtained, it can play the role of a new 8°, and the computation
can be done again. The iteration can continue until the difference between successive
parameter vectors is small enough to assume convergence. One of the main virtues of
this method is that at the last iteration the estimate of (Q°)~! will, apart from the scale
factor 62/n, provide the correct estimate of the asymptotic covariance matrix for the
parameter estimator.
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This iterative solution to the minimization problem is

n -1 n
b = [t [t
i=1

i=l1

n -1 n
zx,ox?'] [z O -h?)]
=1 i=1

—_ br =+ (X()’Xo)~lx()le0
= b[ + Al9

where all terms on the right-hand side are evaluated at b, and e” is the vector of nonlin-
ear least squares residuals. This algorithm has some intuitive appeal as well. For each
iteration, we update the previous parameter estimates by regressing the nonlinear least
squares residuals on the derivatives of the regression functions. The process will have
converged (i.e., the update will be 0) when X”e? is close enough to 0. This derivative
has a direct counterpart in the normal equations for the linear model, X’e = 0.

Asusual, when using a digital computer, we will not achieve exact convergence with
X%e” exactly equal to zero. A useful, scale-free counterpart to the convergence criterion
discussed in Section E.6.5is § = e"X"(X”X%)~'X"e". We note, finally, that iteration of
the linearized regression, although a very effective algorithm for many problems, does
not always work. As does Newton’s method, this algorithm sometimes “jumps off” to a
wildly errant second iterate, after which it may be impossible to compute the residuals
for the nextiteration. The choice of starting values for the iterations can be crucial. There
is art as well as science in the computation of nonlinear least squares estimates. [See
McCullough and Vinod (1999).] In the absence of information about starting values, a
workable strategy is to try the Gauss—Newton iteration first. If it fails, go back to the
initial starting values and try one of the more general algorithms, such as BFGS, treating
minimization of the sum of squares as an otherwise ordinary optimization problem.

A consistent estimator of o2 is based on the residuals:

~2 1 - 2
&t =~ ig[y, h(x;. b)]%. (9-13)

A degrees of freedom correction, 1/(n — K), where K is the number of elements in 8, is
notstrictly necessary here, because all results are asymptotic in any event. Davidson and
MacKinnon (1993) argue that on average, (9-13) will underestimate o2, and one should
use the degrees of freedom correction. Most software in current use for this model does,
but analysts will want to verify which is the case for the program they are using. With
this in hand, the estimator of the asymptotic covariance matrix for the nonlinear least
squares estimator is given in (9-12). :

Once the nonlinear least squares estimates are in hand, inference and hypothesis
tests can proceed in the same fashion as prescribed in Chapter 7. A minor problem can
arise in evaluating the fit of the regression in that the familiar measure,

=bt+

n 2
R=1— M’ (9-14)
Z?:l i =37

is no longer guaranteed to be in the range of 0 to 1. It does, however, provide a useful
descriptive measure.
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9.3 APPLICATIONS

We will examine two applications. The first is a nonlinear extension of the consump-
tion function examined in Example 2.1. The Box-Cox transformation presented in
Section 9.3.2 is a device used to search for functional form in regression.

9.3.1 A Nonlinear Consumption Function

The linear consumption function analyzed at the beginning of Chapter 2 is a restricted
version of the more general consumption function

C=a+pBY" +e¢,

in which y equals 1. With this restriction, the model is linear. If y is free to vary, however,
then this version becomes a nonlinear regression. The linearized model is

C— (a4 BY") + (@14 Y +y°8°Y" nY) =a + B(Y"") + 7 (Y InY) +e.

The nonlinear least squares procedure reduces to iterated regression of

, 1
0 ah(.) dh(.) Bh(.) 0
0 0 40 0 _ —
C=C+y’B8Y nYonx = 20 350 9,0 | Yl’ .
B8YY InY

Quarterly data on consumption, real disposable income, and several other variables
for 1950 to 2000 are listed in Appendix Table F5.1. We will use these to fit the nonlinear
consumption function. This turns out to be a particularly straightforward estimation
problem. Iterations are begun at the linear least squares estimates for « and g and 1
for ¥. As shown below, the solution is reached in 8 iterations, after which any further
iteration is merely “fine tuning” the hidden digits. (i.e., those that the analyst would not
be reporting to their reader.) (“Gradient” is the scale-free convergence measure noted
above.)

Begin NLSQ iterations. Linearized regression.

Iteration = 1; Sum of squares = 1536321.88; Gradient = 996103.930
Iteration = 2; Sum of squares = .1847 x 10'2; Gradient = .1847 x 10!
Iteration = 3; Sum of squares = 20406917.6; Gradient = 19902415.7
Iteration = 4; Sum of squares = 581703.598; Gradient = 77299.6342
Iteration = 5; Sum of squares = 504403.969; Gradient = .752189847
Iteration = 6; Sum of squares = 504403.216; Gradient = .526642396E-04
Iteration = 7; Sum of squares = 504403.216; Gradient = .511324981E-07
Iteration = 8; Sum of squares = 504403.216; Gradient = .606793426E-10

The linear and nonlinear least squares regression results are shown in Table 9.1.
Finding the starting values for a nonlinear procedure can be difficult. Simply trying
a convenient set of values can be unproductive. Unfortunately, there are no good rules
for starting values, except that they should be as close to the final values as possible
(not particularly helpful). When it is possible, an initial consistent estimator of g will be
a good starting value. In many cases, however, the only consistent estimator available
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Estimated Consumption Fi G
Linear Model Nonlinear Model

Parameter Estimate Standard Error Estimate Standard Error
o —80.3547 14.3059 458.7990 22.5014

B 0.9217 0.003872 . 0.10085 01091

y 1.0000 — 1.24483 .01205
ee 1,536,321.881 504,403.1725

o . . 87.20983 ; 50.0946

R? 996448 998834

Var|[b] — 0.000119037
Var[c] — ‘ 0.00014532
Cov[b, c] — —0.000131491

is the one we are trying to compute by least squares. For better or worse, trial and
error is the most frequently used procedure. For the present model, a natural set of
values can be obtained because a simple linear model is a special case. Thus, we can
start « and B at the linear least squares values that would result in the special case
of y = 1 and use 1 for the starting value for y. The procedures outlined earlier are
used at the last iteration to obtain the asymptotic standard errors and an estimate of
0. (To make this comparable to s? in the linear model, the value includes the degrees
of freedom correction.) The estimates for the linear model are shown in Table 9.1 as
well. Eight iterations are required for convergence. The value of § is shown at the right.
Note that the coefficient vector takes a very errant step after the first iteration—the
sum of squares becomes huge—but the iterations settle down after that and converge
routinely.

For hypothesis testing and confidence intervals, the usual procedures can be used,
with the proviso that all results are only asymptotic. As such, for testing a restriction,
the chi-squared statistic rather than the F ratio is likely to be more appropriate. For
example, for testing the hypothesis that y is different from 1, an asymptotic ¢ test, based
on the standard normal distribution, is carried out, using

124483 -1

o0 = 20.3178.

This result is larger than the critical value of 1.96 for the 5 percent significance level,
and we thus reject the linear model in favor of the nonlinear regression. We are also
interested in the marginal propensity to consume. In this expanded model, Hy:y =11is
a test that the marginal propensity to consume is constant, not that it is 1. (That would
be a joint test of both y =1 and g =1.) In this model, the marginal propensity to con-
sume is

dc
MPC = — = 8yY”,
ay =P
which varies with Y. To test the hypothesis that this value is 1, we require a particular
value of Y. Since it is the most recent value, we choose DPIygy 4 = 6634.9. At this value,
the MPC is estimated as 1.08264. We estimate its standard error using the delta method,
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with the square root of

[IMPC/3b 9MPC/dc] {

Var[p]  Cov[b, c]| [6MPC/3b
Cov|b,c]  Var|c] |:3MPC/3CZ|

0.00011904  —0.000131491
— c—1 c—1
=[c¥ bY T4 clnY)] [—0.000131491 0.00014532 ]

CYC—l
Y '(1+clnY)
= 0.00007469,
which gives a standard error of 0.0086425. For testing the hypothesis that the MPC is
equal to 1.0 in 2000.4, we would refer

1082641
~0.0086425

to a standard normal table. This difference is certainly statistically significant, so we
would reject the hypothesis.

= —9.562

Example 9.5 Multicollinearity in Nonlinear Regression

In the preceding example, there is no question of collinearity in the data matrix X = [i, y]; the
variation in Y is obvious on inspection. But at the final parameter estimates, the R? in the
regression is 0.999312 and the correlation between the two pseudoregressors x3 = Y and
x2 = BY” InY'is 0.999752. The condition number for the normalized matrix of sums of squares
and cross products is 208.306. (The condition number is computed by computing the square
root of the ratio of the largest to smallest characteristic root of D~'X”X°D " where x) = 1
and D is the diagonal matrix containing the square roots of x?’x{ on the diagonal.) Recall
that 20 was the benchmark value for a problematic data set. By the standards discussed in
Section 4.9.1, the collinearity problem in this “data set” is severe.

9.3.2 THE BOX-COX TRANSFORMATION

The Box—Cox transformation is a device for generalizing the linear model. The trans-
formation is*

a_
RO
A
In a regression model, the analysis can be done conditionally. For a given value of A,
the model

K
y=a+) fx +e (9-15)
k=1

is a linear regression that can be estimated by least squares.* In principle, each regressor
could be transformed by a different value of i, but, in most applications, this level of
generality becomes excessively cumbersome, and 1 is assumed to be the same for all
the variables in the model.®> At the same time, it is also possible to transform y, say, by

3Box and Cox (1964). To be defined for all values of A, x must be strictly positive. See also Zarembka (1974).

“In most applications, some of the regressors—for example, dummy variable—will not be transformed. For
such a variable, say vg, v,(f} = 1, and the relevant derivatives in (9-16) will be zero.

38ee, for example, Seaks and Layson (1983).
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y®. Transformation of the dependent variable, however, amounts to a specification of
the whole model, not just the functional form. We will examine this case more closely
in Section 17.6.2.

Example 9.6 Flexible Cost Function

Caves, Christensen, and Trethaway (1980) analyzed the costs of production for railroads
providing freight and passenger service. Continuing a long line of literature on the costs
of production in regulated industries, a translog cost function (see Section 14.3.2) would
be a natural choice for modeling this multiple-output technology. Several of the firms in
the study, however, produced no passenger service, which would preclude the use of the
translog model. (This model would require the log of zero.) An alternative is the Box-Cox
transformation, which is computable for zero output levels. A constraint must still be placed
on % in their model, as 0™ is defined only if 1 is strictly positive. A positive value of A is
not assured. A question does arise in this context (and other similar ones) as to whether
zero outputs should be treated the same as nonzero outputs or whether an output of zero
represents a discrete corporate decision distinct from other variations in the output levels.
in addition, as can be seen in (9-16), this solution is only partial. The zero values of the
regressors preclude computation of appropriate standard errors.

If & in (9-15) is taken to be an unknown parameter, then the regression becomes nonlin-
ear in the parameters. Although no transformation will reduce it to linearity, nonlinear
least squaresis straightforward. In most instances, we can expect to find the least squares
value of A between —2 and 2. Typically, then, % is estimated by scanning this range for
the value that minimizes the sum of squares. When A equals zero, the transformation is,

by L’Hopital’s rule,
g Y —1)/dx
lim X =limd(x_)/d=limxkxlnx=1nx.
A—0 A r—0 1 A—0

Once the optimal value of A is located, the least squares estimates, the mean squared
residual, and this value of A constitute the nonlinear least squares (and, with normality
of the disturbance, maximum likelihood) estimates of the parameters.

After determining the optimal value of A, it is sometimes treated as if it were a
known value in the least squares results. But A is an estimate of an unknown parameter.
It is not hard to show that the least squares standard errors will always underestimate
the correct asymptotic standard errors.® To get the appropriate values, we need the
derivatives of the right-hand side of (9-15) with respect to «, 8, and 1. In the notation
of Section 9.2.3, these are .

nG _y

Jo

h() oy i
S5 = (9-16)

() o, 0P & o1, o
e S E — E Z(xr _
9 k=1 i 34 k=1 i )‘(Xk T )

6See Fomby, Hill, and Johnson (1984, pp- 426-431).
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We can now use (9-12) and (9-13) to estimate the asymptotic covariance matrix of the
parameter estimates. Note that Inx; appears in 8h(.)/dA. If xx = 0, then this matrix
cannot be computed. This was the point noted at the end of Example 9.6.

It is important to remember that the coefficients in a nonlinear model are not equal
to the slopes (i.e., here the demand elasticities) with respect to the variables. For the
Box-Cox model,’

A
lnY=oz—|—;6{X)L ]+e

9-17)
dE[InY|X]

dln X

Standard errors for these estimates can be obtained using the delta method. The deriva-
tives are 9n/88 = n/B and dn/0x = nln X. Collecting terms, we obtain

=ﬁXA‘=T’_

Asy. Var[f] = (n/8)*{ Asy. Var[B] + (8 In X)*Asy. Var[ 1] + (28 In X)Asy. Cov[B, A]}.

9.4 HYPOTHESIS TESTING AND PARAMETRIC
RESTRICTIONS

In most cases, the sorts of hypotheses one would test in this context will involve fairly
simple linear restrictions. The tests can be carried out using the usual formulas discussed
in Chapter 7 and the asymptotic covariance matrix presented earlier. For more involved
hypotheses and for nonlinear restrictions, the procedures are a bit less clear-cut. Three
principal testing procedures were discussed in Section 6.4 and Appendix C: the Wald,
likelihood ratio, and Lagrange multiplier tests. For the linear model, all three statistics
are transformations of the standard F statistic (see Section 17.6.1), so the tests are
essentially identical. In the nonlinear case, they are equivalent only asymptotically. We
will work through the Wald and Lagrange multiplier tests for the general case and
then apply them to the example of the previous section. Since we have not assumed
normality of the disturbances (yet), we will postpone treatment of the likelihood ratio
statistic until we revisit this model in Chapter 17.

9.4.1 SIGNIFICANCE TESTS FOR RESTRICTIONS:
F AND WALD STATISTICS

The hypothesis to be tested is

Hy:x(B) =q. 9-18)

where r(B) is a column vector of J continuous functions of the elements of 8. These
restrictions may be linear or nonlinear. It is necessary, however, that they be overiden-
tifying restrictions. Thus, in formal terms, if the original parameter vector has K free
elements, then the hypothesis r(8) — q must impose at least one functional relationship

7We have used the result dIn Y/dIn X = XdIn Y/d X.
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on the parameters. If there is more than one restriction, then they must be functionally
independent. These two conditions imply that the J x K matrix

ar(B)

ap’
must have full row rank and that J, the number of restrictions, must be strictly less than
K. (This situation is analogous to the linear model, in which R(8) would be the matrix
of coefficients in the restrictions.)

Let b be the unrestricted, nonlinear least squares estimator, and let b, be the esti-
mator obtained when the constraints of the hypothesis are imposed.® Which test statistic
one uses depends on how difficult the computations are. Unlike the linear model, the var-
ious testing procedures vary in complexity. For instance, in our example, the Lagrange
multiplier is by far the simplest to compute. Of the four methods we will consider, only
this test does not require us to compute a nonlinear regression.

The nonlinear analog to the familiar F statistic based on the fit of the regression
(i.e., the sum of squared residuals) would be

Sb,) — Sb)]/J
Sb)/(n—K)

R(B) = (9-19)

F[l,n— K] = [

(9-20)

This equation has the appearance of our earlier F ratio. In the nonlinear setting, how-
ever, neither the numerator nor the denominator has exactly the necessary chi-squared
distribution, so the F distribution is only approximate. Note that this F statistic requires
that both the restricted and unrestricted models be estimated.

The Wald test is based on the distance between r(b) and q. If the unrestricted esti-
mates fail to satisfy the restrictions, then doubt is cast on the validity of the restrictions.
The statistic is

W = [r(b) — q]'{ Est.Asy. Var[r(b) — q]}_l[r(b) —q]

) o 9-21)
= [1(b) — q]' {RB)VR'(0)} ' [x(b) — q,

where
V = Est.Asy. Var[b],

and R(b) is evaluated at b, the estimate of .

Under the null hypothesis, this statistic has a limiting chi-squared distribution with
J degrees of freedom. If the restrictions are correct, the Wald statistic and J times the F
statistic are asymptotically equivalent. The Wald statistic can be based on the estimated
covariance matrix obtained earlier using the unrestricted estimates, which may provide
a large savings in computing effort if the restrictions are nonlinear. It should be noted
that the small-sample behavior of W can be erratic, and the more conservative F statistic
may be preferable if the sample is not large.

The caveat about Wald statistics that applied in the linear case applies here as well.
Because it is a pure significance test that does not involve the alternative hypothesis, the

8This computational problem may be extremely difficult in its own right, especially if the constraints are
nonlinear. We assume that the estimator has been obtained by whatever means are necessary.
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Wald statistic is not invariant to how the hypothesis is framed. In cases in which there
are more than one equivalent ways to specify r(8) = q, W can give different answers
depending on which is chosen.

9.4.2 TESTS BASED ON THE LM STATISTIC

The Lagrange multiplier test is based on the decrease in the sum of squared residuals
that would result if the restrictions in the restricted model were released. The formalities
of the test are given in Sections 17.5.3 and 17.6.1. For the nonlinear regression model,
the test has a particularly appealing form.” Let e, be the vector of residuals y; — A(x;. b,)
computed using the restricted estimates. Recall that we defined X° as an n x K matrix
of derivatives computed at a particular parameter vector in (9-6). Let X? be this ma-
trix computed at the restricted estimates. Then the Lagrange multiplier statistic for the
nonlinear regression model is

0/w0ry01—
— e;X*[X*,X*] ngle*
e.e./n

LM

(9-22)

Under Hy, this statistic has a limiting chi-squared distribution with J degrees of freedom.
What is especially appealing about this approach is that it requires only the restricted
estimates. This method may provide some savings in computing effort if, as in our
example, the restrictions resultin a linear model. Note, also, that the Lagrange multiplier
statistic is n times the uncentered R’ in the regression of e, on X'. Many Lagrange
multiplier statistics are computed in this fashion.

Example 9.7 Hypotheses Tests in a Nonlinear Regression Model
We test the hypothesis Hg:y = 1 in the consumption function of Section 9.3.1.

o F statistic. The F statistic is

1,536,321.881 — 504,403.57) /1

|
Fl1,204 - 3] = 504,403.57/(204 — 3)

=411.29.

The critical value from the tables is 4.18, so the hypothesis is rejected.

e  Wald statistic. For our example, the Wald statistic is based on the distance of y from
1 and is simply the square of the asymptotic t ratio we computed at the end of the
example:

_(1.244827 — 1)
= 7 0.01205?

The critical value from the chi-squared table is 3.84.
e Lagrange multiplier. For our example, the elements in x' are

= 412.805.

X' =[1,Y", ByY’ InY].

To compute this at the restricted estimates, we use the ordinary least squares
estimates for « and g and 1 for y so that

x' =[1,Y,8YInY].

9This test is derived in Judge et al. (1985). A lengthy discussion appears in Mittelhammer et al. (2000).
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The residuals are the least squares residuals computed from the linear regression.
Inserting the values given earlier, we have
996,103.9
LM = : = 132.267.
(1,536,321.881/204)
As expected, this statistic is also larger than the critical value from the chi-squared
table.

9.4.3 A SPECIFICATION TEST FOR NONLINEAR REGRESSIONS:
THE P TEST

MacKinnon, White, and Davidson (1983) have extended the J test discussed in Sec-
tion 8.3.3 to nonlinear regressions. One result of this analysis is a simple test for linearity
versus loglinearity.

The specific hypothesis to be tested is

Hy:y=h'(x, B) + &
Yersus |

Hi:g(y) =h'@.y) + &,

where x and z are regressor vectors and 8 and y are the parameters. As the authors
note, using y instead of, say, j(y) in the first function is nothing more than an implicit
definition of the units of measurement of the dependent variable.

Anintermediate case is useful. If we assume that g(y) is equal to y but we allow #°(.)
and A'(.) to be nonlinear, then the necessary modification of the J test is straightforward,
albeit perhaps a bit more difficult to carry out. For this case, we form the compound
model

y=({10-ah'x, B) +ahl(z,y)+e
= ho(x, B) +a[hl(z, y) — KO (x, B)] +=.

Presumably, both 8 and y could be estimated in isolation by nonlinear least squares.
Suppose that a nonlinear least squares estimate of y has been obtained. One approach
is to insert this estimate in (9-23) and then estimate B and & by nonlinear least squares.
The J test amounts to testing the hypothesis that o equals zero. Of course, the model
is symmetric in A°(.) and 4!(.), so their roles could be reversed. The same conclusions
drawn earlier would apply here.

Davidson and MacKinnon (1981) propose what may be a simpler alternative. Given
an estimate of 8, say §, approximate the first i%(x, 8) in (9-23) with a linear Taylor series
at this point. The result is

(9-23)

9K ()

h(x, B) ~ W'(x, B) + 8—3,] B-H=h"+1"p - A8 9-24)

(Note H? is a row vector of derivatives.) Using this device, they replace (9-23) with
y=h'+H' =R +alh' @) - 'x B)] +e,

in which 8 and o can be estimated by linear least squares. As before, the J test amounts
to testing the significance of &. If it is found that & is significantly different from zero,
then Hj is rejected. For the authors’ asymptotic results to hold, any initial consistent
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estimator of B will suffice for §; the nonlinear least squares estimator that they suggest
seems a natural choice.1?

Now we can generalize the test to allow a nonlinear function, g(y), in H;. Davidson
and MacKinnon require g(y) to be monotonic, continuous, and continuously
differentiable and not to introduce any new parameters. (This requirement excludes
the Box-Cox model, which is considered in Section 9.3.2.) The compound model that
forms the basis of the test is

A -y — & B)] +alg(y) — h'(z, y)] ==. , (9-25)

Again, there are two approaches. As before, if p is an estimate of y, then 8 and & can be
estimated by maximum likelihood conditional on this estimate.'! This method promises
to be extremely messy, and an alternative is proposed. Rewrite (9-25) as

y—h'x. By =alh(z,y) — g»)] +aly — Bx, B)] + .

Now use the same linear Taylor series expansion for #°(x, B) on the left-hand side and
replace both y and A°(x, B) with /° on the right. The resulting model is

y =R+ 08 = H°B +a[h' — g(h°)] +e. (5-26)

As before, with an initial estimate of B, this model can be estimated by least squares.

This modified form of the J test is labeled the P rest. As the authors discuss, it is
probably not as powerful as any of the Wald or Lagrange multiplier tests that we have
considered. In their experience, however, it has sufficient power for applied research
and is clearly simple to carry out.

The P test can be used to test a linear specification against a loglinear model. For
this test, both 4°(.) and h'(.) are linear, whereas g(y) = In y. Let the two competing
models be denoted

Hy:y=xB+¢
and
Hi:lny=Inx)y +e.
[We stretch the usual notational conventions by using In(x) for (Inxy, ..., Inx;).] Now

letb and ¢ be the two linear least squares estimates of the parameter vectors. The P test
for H, as an alternative to Hy is carried out by testing the significance of the coefficient
& in the model

y=xB+a[lny— Inxb)] + ¢. 9-27)

The second term is the difference between predictions of In y obtained directly from
the loglinear model and obtained as the log of the prediction from the linear model.
We can also reverse the roles of the two formulas and test Hy as the alternative. The

10This procedure assumes that Hy is correct, of course.

U east squares will be inappropriate because of the transformation of y, which will translate to a Jacobian
term in the log-likelihood. See the later discussion of the Box-Cox model.
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a b,- (5% 1?2 s
Linear —-228.714 —23.849 0.1770 0.95548 76.277
(13.891) (2.044) (0.00278)
Pg test for the linear model, @ = —121.496 (46.353),t = —2.621
Loglinear —8.9473 -0.2590 1.8205 0.96647 0.14825
(0.2181) (0.0236) (0.0289)

Pg test for the loglinear model, & = —0.0003786 (0.0001969), ¢ = 1.925

compound regression is
Iny=Inx'p +a(y—e"™) +e. (9-28)

The test of linearity vs. loglinearity has been the subject of a number of studies.
Godfrey and Wickens (1982) discuss several approaches.

Example 9.8 Money Demand
A large number of studies have estimated money demand equations, some linear and some
log-linear.'? Quarterly data from 1950 to 2000 for estimation of a money demand equation
are given in Appendix Table F5.1. The interest rate is the quarterly average of the monthly
average 90 day T-bill rate. The money stock is M1. Real GDP is seasonally adjusted and
stated in 1996 constant dollars. Results of the Pr test of the linear versus the loglinear model
are shown in Table 9.2.

Regressions of M1 on a constant, r and Y, and In M1 on a constant, Inr and In Y, produce
the results given in Table 9.2 (standard errors are given in parentheses). Both models appear
to fit quite well,’® and the pattern of significance of the coefficients is the same in both
equations. After computing fitted values from the two equations, the estimates of « from the
two models are as shown in Table 9.2. Referring these to a standard normal table, we reject
the linear model in favor of the loglinear model.

9.5 ALTERNATIVE ESTIMATORS FOR NONLINEAR
REGRESSION MODELS

Section 9.2 discusses the “standard” case in which the only complication to the classical
regression model of Chapter 2 is that the conditional mean function in y; = h(x;, B) +¢&;
is a nonlinear function of 8. This fact mandates an alternative estimator, nonlinear
least squares, and some new interpretation of the “regressors” in the model. In this
section, we will consider two extensions of these results. First, as in the linear case,
there can be situations in which the assumption that Cov[x;, ¢;] = 0 is not reasonable.
These situations will, as before, require an instrumental variables treatment, which we
consider in Section 9.5.1. Second, there will be models in which it is convenient to
estimate the parameters in two steps, estimating one subset at the first step and then
using these estimates in a second step at which the remaining parameters are estimated.

12A comprehensive survey appears in Goldfeld (1973).
13The interest elasticity is in line with the received results. The income elasticity is quite a bit larger.
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We will have to modify our asymptotic results somewhat to accommodate this estimation
strategy. The two-step estimator is discussed in Section 9.5.2.

9.5.1 NONLINEAR INSTRUMENTAL VARIABLES ESTIMATION

In Section 5.4, we extended the linear regression model to allow for the possibility that
the regressors might be correlated with the disturbances. The same problem can arise in
nonlinear models. The consumption function estimated in Section 9.3.1 is almost surely
a case in point, and we reestimated it using the instrumental variables technique for
linear models in Example 5.3. In this section, we will extend the method of instrumental
variables to nonlinear regression models.

In the nonlinear model,

Vi =hx;, B) + ¢,

the covariates x; may be correlated with the disturbances. We would expect this effect
to be transmitted to the pscudoregressors, x! = dh(x;, B)/88. If so, then the results that
we derived for the linearized regression would no longer hold. Suppose that there is a
set of variables [z, ..., zz] such that

plim(1/m)Z'e =0 - 9-29)
and
plim(1/mZ'X° = Q% +#0,

where XU is the matrix of pseudoregressors in the linearized regression, evaluated at the
true parameter values. If the analysis that we did for the linear model in Section 5.4 can
be applied to this set of variables, then we will be able to construct a consistent estimator
for B using the instrumental variables. As a first step, we will attempt to replicate the

approach that we used for the linear model. The linearized regression model is given in
(9'7)7

y=hX p)+e~h’+X(B- % +e
or
Y ~X'B+e,
where
Y =y—h’+X°8°.

For the moment, we neglect the approximation error in linearizing the model. In (9-29),
we have assumed that

plim(1/n)Z'y® = plim (1/n)Z’X"B. (9-30)

Suppose, as we did before, that there are the same number of instrumental variables
as there are parameters, that is, columns in X°. (Note: This number need not be the
number of variables. See our preceding example.) Then the “estimator” used before is
suggested:

by = (Z'X%71Z'y°. : (9-31)
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The logic is sound, but there is a problem with this estimator. The unknown parameter
vector B appears on both sides of (9-30). We might consider the approach we used for
our first solution to the nonlinear regression model. That is, with some initial estima-
tor in hand, iterate back and forth between the instrumental variables regression and
recomputing the pseudoregressors until the process converges to the fixed point that
we seek. Once again, the logic is sound, and in principle, this method does produce the
estimator we seek.
If we add to our preceding assumptions

1
%Z’e 4, N[0, 6%Qu4],

then we will be able to use the same form of the asymptotic distribution for this estimator
that we did for the linear case. Before doing so, we must fill in some gapsin the preceding.
First, despite its intuitive appeal, the suggested procedure for finding the estimator is
very unlikely to be a good algorithm for locating the estimates. Second, we do not wish to
limit ourselves to the case in which we have the same number of instrumental variables as
parameters. So, we will consider the problem in general terms. The estimation criterion
for nonlinear instrumental variables is a quadratic form,

Ming S(B) = 3{[y — h(X, )1 Z}Z'Z)"{Z']y — h(X, B)]}
= 1e(BYLZL'L) ' Le(B).

The first-order conditions for minimization of this weighted sum of squares are

BB _ _xvz@zyzep) =o.
op :

This result is the same one we had for the linear model with X" in the role of X. You
should check that when e(8) = y — X8, our results for the linear model in Section 9.5.1
are replicated exactly. This problem, however, is highly nonlinear in most cases, and the
repeated least squares approach is unlikely to be effective. But it is a straightforward
minimization problem in the frameworks of Appendix E, and instead, we can just treat
estimation here as a problem in nonlinear optimization.

We have approached the formulation of this instrumental variables estimator more
or less strategically. However, there is a more structured approach. The orthogonality
condition

plim(1/n)Z'e =0

defines a GMM estimator. With the homoscedasticity and nonautocorrelation assump-
tion, the resultant minimum distance estimator produces precisely the criterion function
suggested above. We will revisit this estimator in this context, in Chapter 18.

With well-behaved pseudoregressors and instrumental variables, we have the gen-
eral result for the nonlinear instrumental variables estimator; this result is discussed at
length in Davidson and MacKinnon (1993).
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R R R

THEOREM 9.3 Asymptotic Distribution of the Nonlinear
Instrumental Variables Estimator
With well-behaved instrumental variables and pseudoregressors,

brv £ N[8.02(Q% Q) 'Q%) 7.

We estimate the asympiotic covariance matrix with
Est.Asy. Var[byy] = 62[XVZ(Z'2)"'Z’X°] !,

where X0 is X computed using bry.

As a final observation, note that the “two-stage least squares” interpretation of the
instrumental variables estimator for the linear model still applies here, with respect
to the IV estimator. That is, at the final estimates, the first-order conditions (normal
equations) imply that '

XOIZ(Z!Z)—lzly — XOIZ(ZIZ)—lzonB’

which says that the estimates satisfy the normal equations for alinear regression of y (not
y°) on the predictions obtained by regressing the columns of X" on Z. The interpretation
is not quite the same here, because to compute the predictions of XY, we must have the
estimate of 8 in hand. Thus, this two-stage least squares approach does not show how
to compute byy; it shows a characteristic of byy.

Example 9.9 Instrumental Variables Estimates of the
Consumption Function

The consumption function in Section 9.3.1 was estimated by nonlinear least squares without
accounting for the nature of the data that would certainly induce correlation between X°
and e. As we did earlier, we will reestimate this model using the technique of instrumental
variables. For this application, we will use the one-period lagged value of consumption and
one- and two-period lagged values of income as instrumental variables estimates. Table 9.3
reports the nonlinear least squares and instrumental variables estimates. Since we are using
two periods of lagged values, two observations are lost. Thus, the least squares estimates
are not the same as those reported earlier.

The instrumental variable estimates differ considerably from the least squares estimates.
The differences can be deceiving, however. Recall that the MPC in the model is 8Y"~'. The
2000.4 value for DPI that we examined earlier was 6634.9. At this value, the instrumental
variables and least squares estimates of the MPC are 0.8567 with an estimated standard
error of 0.01234 and 1.08479 with an estimated standard error of 0.008694, respectively.
These values do differ a bit but less than the quite large differences in the parameters might
have led one to expect. We do note that both of these are considerably greater than the
estimate in the linear model, 0.9222 (and greater than one, which seems a bit implausible).

9.56.2 TWO-STEP NONLINEAR LEAST SQUARES ESTIMATION

In this section, we consider a special case of this general class of models in which the
nonlinear regression model depends on a second set of parameters that is estimated
separately.
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lohlinear Least Squares

Instrumental Variables Least Squares
Parameter Estimate Standard Error Estimate Standard Error
o 627.031 26.6063 468.215 22.788
B 0.040291 0.006050 0.0971598 0.01064
y 1.34738 0.016816 1.24892 0.1220
o 57.1681 — 49.87998 —
e!

e 650,369.805 — 495,114.490 —

The model is
y=h(x, B,w,y)+e.

We consider cases in which the auxiliary parameter p is estimated separately in a model
that depends on an additional set of variables w. This first step might be a least squares
regression, a nonlinear regression, or a maximum likelihood estimation. The parameters
y will usually enter 4(.) through some function of y and w, such as an expectation. The
second step then consists of a nonlinear regression of y on A(x, 8, w, ¢) in which c¢is the
first-round estimate of y. To put this in context, we will develop an example.

The estimation procedure is as follows.

1. Estimate y by least squares, nonlinear least squares, or maximum likelihood. We
assume that this estimator, however obtained, denoted ¢, is consistent and asymp-
totically normally distributed with asymptotic covariance matrix V.. Let V. be any
appropriate estimator of V..

2. Estimate B by nonlinear least squares regression of y on h(x, 8,w, ¢). Let 02V,
be the asymptotic covariance matrix of this estimator of 8, assuming p is known
and let 2V, be any appropriate estimator of 02V, = ¢%X”X%) !, where X°
is the matrix of pseudoregressors evaluated at the true parameter values x! =
dh(x;, B, wi,y)/9B.

The argument for consistency of bis based on the Slutsky Theorem, D.12 as we treatb asa
function of c and the data. We require, as usual, well-behaved pseudoregressors. As long
as cis consistent for y, the large-sample behavior of the estimator of B conditioned on ¢
is the same as that conditioned on p, that s, as if y were known. Asymptotic normality is
obtained along similar lines (albeit with greater difficulty). The asymptotic covariance
matrix for the two-step estimator is provided by the following theorem.

THEOREM 9.4 Asymptotic Distribution of the Two-Step Nonlinear
Least Squares Estimator [Murphy and Topel (1985)]
Under the standard conditions assumed for the nonlinear least squares estima-

tor, the second-step estimator of B is consistent and asymptotically normally dis-
tributed with asymptotic covariance matrix

Vi =02V, + V,[CV.C' — CV.R' — RV.C]V,,
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THEOREM 9.4 (Continued)
where

1« h(x;, B, wi,
C=nplim- Y x'&2 (M)
ni= ay’

—npllm ZX : (M)

The function 9g(.)/dy in the a’eﬁnmon of R is the gradient of the ith term in the
log-likelihood function if y is estimated by maximum likelihood. (The precise
form is shown below.) If y appears as the parameter vector in a regression model,

zi = f(wi,y) +u;, 9-32)
then dg(.)/dy will be a derivative of the sum of squared deviations function,
9g() _ " af (wi, y)
dy dy
If this is a linear regression, then the derivative vector is just w;.

and

Implementation of the theorem requires that the asymptotic covariance matrix
computed as usual for the second-step estimator based on ¢ instead of the true y must
be corrected for the presence of the estimator ¢ in b.

Before developing the application, we note how some important special cases are
handled. If y enters A(.) as the coefficient vector in a prediction of another variable in
a regression model, then we have the following useful results.

Case 1 Linear regression models. If () = x/B + 8 E [z | w;| + &, where E[z |w;] =
w}y, then the two models are just fit by linear least squares as usual. The regression
for y includes an additional variable, wic. Let d be the coefficient on this new variable.
Then ’

n
C=d Z erx; W,
i=1

and
n
R = Z(e,-ui)x,-w’
i=1
Case 2 Uncorrelated linear regression models. In Case 1, if the two regression distur-

bances are uncorrelated, then R = 0.

Case 2 is general. The terms in R vanish asymptotically if the regressions have
uncorrelated disturbances, whether either or both of them are linear. This situation will
be quite common.
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Case 3 Prediction from a nonlinear model. In Cases1and?2,if E[z; | w;]is anonlinear
function rather than a linear function, then it is only necessary to change w; to w? =
9 E[z; | w;]/dy—a vector of pseudoregressors—in the definitions of C and R.

Case 4 Subset of regressors. In case 2 (but not in case 1), if w contains all the variables
that are in x, then the appropriate estimator is simply

2.2
Su

Vi =5 (1 + Cs—z) XX,

e

where X* includes all the variables in x as well as the prediction for z.

All these cases carry over to the case of a nonlinear regression function for y. It
is only necessary to replace x;, the actual regressors in the linear model, with x{, the

pseudoregressors.

9.5.3 TWO-STEP ESTIMATION OF A CREDIT SCORING MODEL.

Greene (1995¢) estimates a model of consumer behavior in which the dependent vari-
able of interest is the number of major derogatory reports recorded in the credit history
of a sample of applicants for a type of credit card. In fact, this particular variable is one
of the most significant determinants of whether an application for a loan or a credit card
will be accepted. This dependent variable y is a discrete variable that at any time, for
most consumers, will equal zero, but for a significant fraction who have missed several
revolving credit payments, it will take a positive value. The typical values are zero, one,
or two, but values up to, say, 10 are not unusual. This count variable is modeled using a
Poisson regression model. This model appears in Sections B.4.8,22.2.1,22.3.7, and 21.9.
The probability density function for this discrete random variable is

e~ Al

Probly; = j] = 7

The expected value of y; is A;, so depending on how ; is specified and despite the unusual
nature of the dependent variable, this model is a linear or nonlinear regression model.
We will consider both cases, the linear model E[y; | x;] = x]8 and the more common
loglinear model E[y; | x;] = e%F where x; might include such covariates as age, income,
and typical monthly credit account expenditure. This model is usually estimated by
maximum likelihood. But since it is a bona fide regression model, least squares, either
linear or nonlinear, is a consistent, if inefficient, estimator.

In Greene’s study, a secondary model is fit for the outcome of the credit card
application. Let z; denote this outcome, coded 1 if the application is accepted, 0 if not.
For purposes of this example, we will model this outcome using a logit model (see the
extensive development in Chapter 21, esp. Section 21.3). Thus

evy
Prob[z; = 1] = P(w;, y) = oo
where w; might include age, income, whether the applicants own their own homes, and
whether they are self-employed; these are the sorts of variables that “credit scoring”
agencies examine.
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Finally, we suppose that the probability of acceptance enters the regression model
as an additional explanatory variable. (We concede that the power of the underlying
theory wanes a bit here.) Thus, our nonlinear regression model is

Ely: |x] =X +8P(w,,p) (linear)
or
Eyi |x;] = e¥F+P™:Y) (Joglinear, nonlinear).

The two-step estimation procedure consists of estimation of y by maximum likelihood,
then computing P, = P(w;, ¢), and finally estimating by either linear or nonlinear
least squares [8, 8] using P; as a constructed regressor. We will develop the theoretical
background for the estimator and then continue with implementation of the estimator.

For the Poisson regression model, when the conditional mean function is linear,
x) = x;. If it is loglinear, then

X} = 94; /3B = dexp(x/B)/3B = Aix;,

which is simple to compute. When P(w;, y)isincludedin the model, the pseudoregressor
vector x? includes this variable and the coefficient vector is [8, §]. Then

P
Vp=-— Z[Yi — h(x;.wi, b, o) x (XVX%),
i
where X is computed at [b, d, ¢], the final estimates.
For the logit model, the gradient of the log-likelihood and the estimator of V. are
given in Section 21.3.1. They are

dlnf(z |wi, y)/0y = [z — P(wi, y)]w;

and

n -1
Ve=1> [z — Pwi. p)Pwiw;

i=1
Note that for this model, we are actually inserting a prediction from a regression model
of sorts, since E[z | w;] = P(w;, y). To compute C, we will require

0h(.)/0y = X80P, /0y = L8P (1~ F)w;.

The remaining parts of the corrected covariance matrix are computed using
n
C=> (X)) [hdPi(1— P)IW,
i=1 .
and

R=) (L&)&)@ — Pow,.

i=1

(If the regression model is linear, then the three occurrences of A; are omitted.)
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it Scoring |

Step 2. E[y; | x;] = eXf+0

Step 1. P(w;,y) Step 2. Ely; | x;1=x[B+ 6P,
Variable Est. St.Er. Est. St.Er* St.Er.* Est. St.Er. St.Er.*
Constant 27236 1.0970  —1.0628 1.1907 1.2681 —7.1969 6.2708 49.3854
Age —0.7328 0.02961 0.021661 0.018756 0.020089 0.079984 0.08135 0.61183
Income 0.21919 0.14296 0.03473 0.07266  0.082079 —0.1328007 0.21380 1.8687
Self-empl —1.9439 1.01270
Own Rent  0.18937 0.49817
Expend —0.000787 0.000368 0.000413 —0.28008  0.96429 0.96969
P(w;,y) 1.0408 1.0653 1.177299 6.99098 5.7978 49.34414
In L —53.925 '
ee 95.5506 80.31265
s 0.977496 0.89617
R 0.05433 0.20514
Mean 0.73 0.36 0.36

Data used in the application are listed in Appendix Table F9.1. We use the following
model:

Prob|z; = 1] = P(age, income, own rent, self-employed),
E[y;] = h(age, income, expend).

We have used 100 of the 1,319 observations used in the original study. Table 9.4 reports
the results of the various regressions and computations. The column denoted St.Er.*
contains the corrected standard error. The column marked St.Er. contains the standard
errors that would be computed ignoring the two-step nature of the computations. For
the linear model, we used €’e/n to estimate o2,

As expected, accounting for the variability in ¢ increases the standard errors of the
second-step estimator. The linear model appears to give quite different results from the
nonlinear model. But this can be deceiving. In the linear model, dE[y; | x;, P]/9x; =
B whereas in the nonlinear model, the counterpart is not g but ;8. The value of
A; at the mean values of all the variables in the second-step model is roughly 0.36
(the mean of the dependent variable), so the marginal effects in the nonlinear model
are [0.0224, —0.0372, —0.07847, 1.9587], respectively, including F; but not the constant,
which are reasonably similar to those for the linear model. To compute an asymptotic
covariance matrix for the estimated marginal effects, we would use the delta method
from Sections D.2.7 and D.3.1. For convenience, let b, = [b’, d]', and let v; = [x/, P,
which just adds F; to the regressor vector so we need not treat it separately. Then the
vector of marginal effects is

m = exp(v;b,) x b, = A;b,,.
The matrix of derivatives is

G =0m/3b, =2, (I+b,v),
so the estimator of the asymptotic covariance matrix for mis

Est.Asy. Var[m] = GV;G'.
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TABLE 9.5 Maximum Likelihgod Estim of Secopd-Step Regre

Constant Age Income Expend P
Estimate —6.3200 0.073106 0.045236 ~0.00689 4.6324
Std.Error 3.9308 0.054246 0.17411 0.00202 3.6618
Corr.Std.Error 9.0321 0.102867 0.402368 0.003985 9.918233

One might be tempted to treat A; as a constant, in which case only the first term in
the quadratic form would appear and the computation would amount simply to mul-
tiplying the asymptotic standard errors for b, by A;. This approximation would leave
the asymptotic ¢ ratios unchanged, whereas making the full correction will change the
entire covariance matrix. The approximation will generally lead to an understatement
of the correct standard errors.

Finally, although this treatment is not discussed in detail until Chapter 18, we note at
this point that nonlinear least squares is an inefficient estimator in the Poisson regression
model; maximum likelihood is the preferred, efficient estimator. Table 9.5 presents the
maximum likelihood estimates with both corrected and uncorrected estimates of the
asymptotic standard errors of the parameter estimates. (The full discussion of the model
is given in Section 21.9.) The corrected standard errors are computed using the methods
shown in Section 17.7. A comparison of these estimates with those in the third set of
Table 9.4 suggests the clear superiority of the maximum likelihood estimator.

9.6 SUMMARY AND CONCLUSIONS

In this chapter, we extended the regression model to a form which allows nonlinearity
in the parameters in the regression function. The results for interpretation, estimation,
and hypothesis testing are quite similar to those for the linear model. The two crucial
differences between the two models are, first, the more involved estimation procedures
needed for the nonlinear model and, second, the ambiguity of the interpretation of the
coefficients in the nonlinear model (since the derivatives of the regression are often
nonconstant, in contrast to those in the linear model.) Finally, we added two additional
levels of generality to the model. A nonlinear instrumental variables estimator is sug-
gested to accommodate the possibility that the disturbances in the model are correlated
with the included variables. In the second application, two-step nonlinear least squares
is suggested as a method of allowing a model to be fit while including functions of
previously estimated parameters.

Key Terms and Concepts
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Exercises

1.

2.

Describe how to obtain nonlinear least squares estimates of the parameters of the
model y = ax? + ¢.
Use MacKinnon, White, and Davidson’s Py test to determine whether a linear or
loglinear production model is more appropriate for the data in Appendix Table
F6.1. (The test is described in Section 9.4.3 and Example 9.8.)
Using the Box—Cox transformation, we may specify an alternative to the Cobb-
Dougilas model as
2 A
lnY=a+ﬁk(K D—}—ﬁl(L 1)+8.
A A
Using Zellner and Revankar’s data in Appendix Table F9.2, estimate «, B, f;, and
A by using the scanning method suggested in Section 9.3.2. (Do not forget to scale
Y, K, and L by the number of establishments.) Use (9-16), (9-12), and (9-13) to
compute the appropriate asymptotic standard errors for your estimates. Compute
the two output elasticities, 31n Y/9In K and 8 1n Y/3d In L, at the sample means of
Kand L. [Hint: 9lnY/dln K = K31In Y/3K.]
For the model in Exercise 3, test the hypothesis that A = 0 using a Wald test, a
likelihood ratio test, and a Lagrange multiplier test. Note that the restricted model
is the Cobb-Douglas log-linear model.
To extend Zeliner and Revankar’s model in a fashion similar to theirs, we can use
the Box—Cox transformation for the dependent variable as well. Use the method
of Example 17.6 (with 8 = 1) to repeat the study of the preceding two exercises.
How do your results change?
Verify the following differential equation, which applies to the Box-Cox transfor-

mation:
dix® (1 . idlx®
i = (X) [XA(IH x)’ - W . (9'33)

Show that the limiting sequence for » = 01is

dix®  (Inx)+!
— = . 9-34
0 A i+l O34
These results can be used to great advantage in deriving the actual second deriva-
tives of the log-likelihood function for the Box—Cox model.
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NONSPHERICAL
DISTURBANCES—THE
GENERALIZED REGRESSION
MODEL

——V 8 =

10.1 INTRODUCTION

In Chapter 9, we extended the classical linear model to allow the conditional mean
to be a nonlinear function.! But we retained the important assumptions about the
disturbances: that they are uncorrelated with each other and that they have a constant
variance, conditioned on the independent variables. In this and the next several chapters,
we extend the multiple regression model to disturbances that violate these classical
assumptions. The generalized linear regression model is

y=XB+¢,
Ele|X] =0, - (10-1)
Elee' | X]=0’R =X,

where @ is a positive definite matrix. (The covariance matrix is written in the form o2
at several points so that we can obtain the classical model, ¢°I, as a convenient special
case.) As we will examine briefly below, the extension of the model to nonlinearity is
relatively minor in comparison with the variants considered here. For present purposes,
we will retain the linear specification and refer to our model simply as the generalized
regression model.

Two cases we will consider in detail are heteroscedasticity and autocorrelation. Dis-
turbances are heteroscedastic when they have different variances. Heteroscedasticity
usually arises in volatile high frequency time-series data such as daily observations in
financial markets and in cross-section data where the scale of the dependent variable
and the explanatory power of the model tend to vary across observations. Microeco-
nomic data such as expenditure surveys are typical. The disturbances are still assumed
to be uncorrelated across observations, so o2 would be

wyp 0 -+ 0 012 0O --- 0

0 wy --- 0 0 o2 .. 0
o’Q = o? . = 2

0 0 - wm 0 0 .- o?

Recall that our definition of nonlinearity pertains to the estimation method required to obtain the parameter
estimates, not to the way that they enter the regression function.

191
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(The first mentioned situation involving financial data is more complex than this, and is
examined in detail in Section 11.8.)

Autocorrelation is usually found in time-series data. Economic time series often
display a “memory” in that variation around the regression function is not independent
from one period to the next. The seasonally adjusted price and quantity series published
by government agencies are examples. Time-series data are usually homoscedastic, so
o2Q might be

1 P1 ctt Pn-1

o1 1 - pna
o’ =g’ . "
Pn-1 Pn-2 - 1

The values that appear off the diagonal depend on the model used for the disturbance.
In most cases, consistent with the notion of a fading memory, the values decline as we
move away from the diagonal.

Panel data sets, consisting of cross sections observed at several points in time, may
exhibit both characteristics. We shall consider them in Chapter 14. This chapter presents
some general results for this extended model. The next several chapters examine in
detail specific types of generalized regression models.

Our earlier results for the classical model will have to be modified. We will take the
same approach in this chapter on general results and in the next two on heteroscedas-
ticity and serial correlation, respectively:

1. We first consider the consequences for the least squares estimator of the more
general form of the regression model. This will include assessing the effect of
ignoring the complication of the generalized model and of devising an appropriate
estimation strategy, still based on least squares.

2. Insubsequent sections, we will examine alternative estimation approaches that
can make better use of the characteristics of the model. We begin with GMM
estimation, which is robust and semiparametric. Minimal assumptions about £ are
made at this point.

3. We then narrow the assumptions and begin to look for methods of detecting the
failure of the classical model—that is, we formulate procedures for testing the
specification of the classical model against the generalized regression.

4, The final step in the analysis is to formulate parametric models that make specific
assumptions about €. Estimators in this setting are some form of generalized least
squares or maximum likelihood.

The model is examined in general terms in this and the next two chapters. Major applica-
tions to panel data and multiple equation systems are considered in Chapters 13 and 14.

10.2 LEAST SQUARES AND INSTRUMENTAL
VARIABLES ESTIMATION

The essential results for the classical model with spherical disturbances

Ele|X]=0
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and
Elee' | X] =o’1 (10-2)

are presented in Chapters 2 through 8. To reiterate, we found that the ordinary least
squares (OLS) estimator

b=XX)"Xy=8+XX)'Xe 10-3)

is best linear unbiased (BLU), consistent and asymptotically normally distributed
(CAN), and if the disturbances are normally distributed, like other maximum likelihood
estimators considered in Chapter 17, asymptotically efficient among all CAN estimators.
We now consider which of these properties continue to hold in the model of (10-1).

To summarize, the least squares, nonlinear least squares, and instrumental variables
estimators retain only some of their desirable properties in this model. Least squares
remains unbiased, consistent, and asymptotically normally distributed. It will, however,
no longer be efficient—this claim remains to be verified—and the usual inference pro-
cedures are no longer appropriate. Nonlinear least squares and instrumental variables
likewise remain consistent, but once again, the extension of the model brings about
some changes in our earlier results concerning the asymptotic distributions. We will
consider these cases in detail.

10.2.1 FINITE-SAMPLE PROPERTIES OF ORDINARY
LEAST SQUARES

By taking expectations on both sides of (10-3), we find that if E[e |X] = 0, then
E[b] = Ex[E[b|X]] = B. (10-4)

Therefore, we have the following theorem.

THEOREM 10.1 Finite Sample Properties of b in the Generalized
Regression Model

If the regressors and disturbances are uncorrelated, then the unbiasedness of least

squares is unaffected by violations of assumption (10-2). The least squares estima-

tor is unbiased in the generalized regression model. With nonstochastic regressors,

or conditional on X, the sampling variance of the least squares estimator is

Var[b|X] = E[(b~ 8)(b—B)|X]
= E[(X'X) ' X'ee’X(X'X) ! | X]

= X'X) X' (¢ 2)X(X'X)"! (10-5)

2 -1 -1

=Z <1x’x) <1X'szx> GX'X) :
n \n n n .
If the regressors are stochastic, then the unconditional variance is Ex [Var[b | X]]. §
In (10-3), b is a linear function of e. Therefore, if € is normally distributed, then

i

b|X ~ N[B, o*(X'X) 1 (X'2X)(X'X)'].
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The end result is that b has properties that are similar to those in the classical
regression case. Since the variance of the least squares estimator is not o2(X'X) 1,
however, statistical inference based on s2(X’X)~! may be misleading. Not only is this
the wrong matrix to be used, but s? may be a biased estimator of 6. There is usually
no way to know whether o?(X’X)~! is larger or smaller than the true variance of b,
so even with a good estimate of o2, the conventional estimator of Var[b] may not be
particularly useful. Finally, since we have dispensed with the fundamental underlying
assumption, the familiar inference procedures based on the F and ¢ distributions will no
longer be appropriate. One issue we will explore at several points below is how badly
one is likely to go awry if the result in (10-5) is ignored and if the use of the familiar
procedures based on s2(X’X)~! is continued.

10.2.2 ASYMPTOTIC PROPERTIES OF LEAST SQUARES

If Var[b|X] converges to zero, then b is mean square consistent. With well-behaved
regressors, (X'X/n)~! will converge to a constant matrix. But (o?/n)(X'X/n) need
not converge at all. By writing this product as

o2 (X’SZX) _ <f ) <Z?=1 > wtfxix'/) (10-6)
n n n n

we see that though the leading constant will, by itself, converge to zero, the matrix is a
sum of n? terms, divided by n. Thus, the product is a scalar that is O(1/n) times a matrix
that is, at least at this juncture, O(r), which is O(1). So, it does appear at first blush that if
the product in (10-6) does converge, it might converge to a matrix of nonzero constants.
In this case, the covariance matrix of the least squares estimator would not converge to
zero, and consistency would be difficult to establish. We will examine in some detail, the
conditions under which the matrix in (10-6) converges to a constant matrix.? If it does,
then since o2/n does vanish, ordinary least squares is consistent as well as unbiased.

C

THEOREM 10.2 Consistency of OLS in the Generalized
Regression Model
If Q = plim(X'X/n) and plim(X’'RX/n) are both finite positive definite matrices,

then b is consistent for B. Under the assumed conditions,

plimb = 8. (10-7)

The conditions in Theorem 10.2 depend on both X and €. An alternative formula?
that separates the two components is as follows. Ordinary least squares is consistent in
the generalized regression model if:

1. The smallest characteristic root of X’X increases without bound as n — oo, which
implies that plim(X’X)~! = 0. If the regressors satisfy the Grenander conditions
G1 through G3 of Section 5.2, then they will meet this requirement.

2In order for the product in (10-6) to vanish, it would be sufficient for (X’2X/n) to be O(n’) where 6 < 1.
3 Amemiya (1985, p. 184).
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2. The largest characteristic root of € is finite for all n. For the heteroscedastic
model, the variances are the characteristic roots, which requires them to be finite.
For models with autocorrelation, the requirements are that the elements of 2 be
finite and that the off-diagonal elements not be too large relative to the diagonal
elements. We will examine this condition at several points below.

The least squares estimator is asymptotically normally distributed if the limiting
distribution of

XX\ 1
b-8)= —X’ 10-8
Vb —g) ( . ) NG & (10-8)
is normal. If plim(X’X/n) = Q, then the limiting distribution of the right-hand side is
the same as that of

1 1 &
_ -1 = wr. -1 Al "
Vors = Q ﬁX e=Q T ;:1 X; &, (10-9)

where x; is a row of X (assuming, of course, that the limiting distribution exists at all).
The question now is whether a central limit theorem can be applied directly to v. If
the disturbances are merely heteroscedastic and still uncorrelated, then the answer is
generally yes. In fact, we already showed this result in Section 5.5.2 when we invoked
the Lindberg-Feller central limit theorem (D.19) or the Lyapounov Theorem (D.20).
The theorems allow unequal variances in the sum. The exact variance of the sum is

1 & o2 &
ﬁ;?‘i&} XI} = 7;601'01"

which, for our purposes, we would require to converge to a positive definite matrix. In
our analysis of the classical model, the heterogeneity of the variances arose because of
the regressors, but we still achieved the limiting normal distribution in (5-7) through
(5-14). All that has changed here is that the variance of ¢ varies across observations as
well. Therefore, the proof of asymptotic normality in Section 5.2.2 is general enough to
include this model without modification. As long as X is well behaved and the diagonal
elements of & are finite and well behaved, the least squares estimator is asymptotically
normally distributed, with the covariance matrix given in (10-5). That is:

E, | Var

In the heteroscedastic case, if the variances of &; are finite and are not dominated
by any single term, so that the conditions of the Lindberg—Feller central limit
theorem apply to v, s in (10-9), then the least squares estimator is asymptotically
normally distributed with covariance matrix

2 1
Asy. Var[b] = %Q‘l plim (-x’szx) oL (10-10)
n

For the most general case, asymptotic normality is much more difficult to establish
because the sums in (10-9) are not necessarily sums of independent or even uncorrelated
random variables. Nonetheless, Amemiya (1985, p. 187) and Anderson (1971) have
shown the asymptotic normality of b in a model of autocorrelated disturbances general
enough to include most of the settings we are likely to meet in practice. We will revisit
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thisissue in Chapters 19 and 20 when we examine time series modeling. We can conclude
that, except in particularly unfavorable cases, we have the following theorem.

THEOREM 10.3 Asymptotic Distribution of b in the GR Model

If the regressors are sufficiently well behaved and the off-diagonal terms in
diminish sufficiently rapidly, then the least squares estimator is asymptotically
normally distributed with mean B and covariance matrix given in (10-10).

e There are two cases that remain to be considered, the nonlinear regression model
and the instrumental variables estimator.

10.2.3 ASYMPTOTIC PROPERTIES OF NONLINEAR
LEAST SQUARES '

If the regression function is nonlinear, then the analysis of this section must be applied
to the pseudoregressors x! rather than the independent variables. Aside from this con-
sideration, no new results are needed. We can just apply this discussion to the linearized
regression model. Under most conditions, the results listed above apply to the nonlinear
least squares estimator as well as the linear least squares estimator.*

10.2.4 ASYMPTOTIC PROPERTIES OF THE INSTRUMENTAL
VARIABLES ESTIMATOR

The second estimator to be considered is the instrumental variables estimator that we
considered in Sections 5.4 for the linear model and 9.5.1 for the nonlinear model. We
will confine our attention to the linear model. The nonlinear case can be obtained by
applying our results to the linearized regression. To review, we considered cases in which
the regressors X are correlated with the disturbances e. If this is the case, as in the time-
series models and the errors in variables models that we examined earlier, then b is
neither unbiased nor consistent.” In the classical model, we constructed an estimator

around a set of variables Z that were uncorrelated with e,
b = XZ(Z'Z)"'ZX|'XZ(Z'Z) ' 2y
(10-11)
=B+ [XZZZL)'ZX]| ' XZZ'Z) 'L s.

Suppose that X and Z are well behaved in the sense discussed in Section 5.4. That is,
plim(1/n)Z'Z = Qgz, a positive definite matrix,
plim(1/n)Z'X = Qzx = Q% a nonzero matrix,

plim(1/n)X'X = Qxx, a positive definite matrix.

4Davidson and MacKinnon (1993) consider this case at length.
5Tt may be asymptotically normally distributed, but around a mean that differs from B.



CHAPTER 10 ¢ Nonspherical Disturbances 197

To avoid a string of matrix computations that may not fit on a single line, for convenience
let ‘

Qxxz = [QxzQ77Qzx] _1QXZQZé

e (xe) ) ()] (pxe)2e)

If Z is a valid set of instrumental variables, that is, if the second term in (10-11) vanishes
asymptotically, then

. ) 1.,
plimbry = 8 + Qxxz Pllm<EZ 6‘) = p.

This result is exactly the same one we had before. We might note that at the several
points where we have established unbiasedness or consistency of the least squares or
instrumental variables estimator, the covariance matrix of the disturbance vector has
played no role; unbiasedness is a property of the means. As such, this result should
come as no surprise. The large sample behavior of byy depends on the behavior of

1 n
Vo lv = —_ﬁ Zl: Z;&;.
. =

This result is exactly the one we analyzed in Section 5.4. If the sampling distribution of
v, converges to a normal distribution, then we will be able to construct the asymptotic
distribution for byy. This set of conditions is the same that was necessary for X when
we considered b above, with Z in place of X. We will once again rely on the results of
Anderson (1971) or Amemiya (1985) that under very general conditions,

1 ¢ (1,
7 ; z:6i —> N [0, o?plim (ZZ szz)} .
With the other results already in hand, we now have the following.

S

THEOREM 10.4 Asymptotic Distribution of the 1V Estimator in

the Generalized Regression Model
If the regressors and the instrumental variables are well behaved in the fashions
discussed above, then

by ~ N|B, Viv],

where

o2 (1, ,
Vv = ’n—(QXX.Z) P11m<nl SZZ) (Qxx.z)-
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10.3 ROBUST ESTIMATION OF ASYMPTOTIC
COVARIANCE MATRICES

There is a remaining question regarding all the preceding. In view of (10-5), is it neces-
sary to discard ordinary least squares as an estimator? Certainly if € is known, then, as
shown in Section 10.5, there is a simple and efficient estimator available based on it, and
the answer is yes. If  is unknown but its structure is known and we can estimate € using
sample information, then the answer is less clear-cut. In many cases, basing estimation
of B on some alternative procedure that uses an £ will be preferable to ordinary least
squares. This subject is covered in Chapters 11 to 14. The third possibility is that @ is
completely unknown, both as to its structure and the specific values of its elements. In
this situation, least squares or instrumental variables may be the only estimator avail-
able, and as such, the only available strategy is to try to devise an estimator for the
appropriate asymptotic covariance matrix of b.

If 028 were known, then the estimator of the asymptotic covariance matrix of b in
(10-10) would be

1/1 11 1 -1
Vors = — (~X’X> <—X’[02SZ]X> (—X’X) i
n\n n n

For the nonlinear least squares estimator, we replace X with X°. For the instrumen-
tal variables estimator, the left- and right-side matrices are replaced with this sample
estimates of Qxx z and its transpose (using X" again for the nonlinear instrumental vari-
ables estimator), and Z replaces X in the center matrix. In all these cases, the matrices
of sums of squares and cross products in the left and right matrices are sample data that
are readily estimable, and the problem is the center matrix that involves the unknown
o?8. For estimation purposes, note that o is not a separate unknown parameter. Since
@ is an unknown matrix, it can be scaled arbitrarily, say by «, and with o% scaled by 1/,
the same product remains. In our applications, we will remove the indeterminacy by
assuming that tr(®) = n, as it is when 0>® = o°I in the classical model. For now, just let
¥ = 02Q. It might seem that to estimate (1/7)X’ XX, an estimator of X, which contains
n(n+1)/2 unknown parameters, is required. But fortunately (since with n observations,
this method is going to be hopeless), this observation is not quite right. What is required
is an estimator of the K(K + 1)/2 unknown elements in the matrix

plimQ, = plim% i 2": a,-jx,-x’]

i=1 j=1

The point is that Q, is a matrix of sums of squares and cross products that involves o
and the rows of X (or Z or X"). The least squares estimator b is a consistent estimator
of B, which implies that the least squares residuals ¢; are “pointwise” consistent esti-
mators of their population counterparts ¢;. The general approach, then, will be to use
X and e to devise an estimator of Q,.

Consider the heteroscedasticity case first. We seek an estimator of

n
1 2 '
= — 0; X;X;.
n
i=1
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White (1980) has shown that under very general conditions, the estimator
] n
Sy = . Z; erx;x, (10-13)
=

has
plim § = plim Q,.°

We can sketch a proof of this result using the results we obtained in Section 5.2.7
Note first that Q. is not a parameter matrix in itself. It is a weighted sum of the outer
products of the rows of X (or Z for the instrumental variables case). Thus, we seek
not to “estimate” Q,, but to find a function of the sample data that will be arbitrarily
close to this function of the population parameters as the sample size grows large. The
distinction is important. We are not estimating the middle matrix in (10-10) or (10-12);
we are attempting to construct a matrix from the sample data that will behave the same
way that this matrix behaves. In essence, if Q, converges to a finite positive matrix,
then we would be looking for a function of the sample data that converges to the same
matrix. Suppose that the true disturbances ¢; could be observed. Then each term in Q,
would equal E [¢/x;x] | x;]. With some fairly mild assumptions about x;, then, we could
invoke a law of large numbers (see Theorems D.2 through D.4.) to state that if Q, has
a probability limit, then

n

1< 1
L 2¢ v — nl} P
plim = p g 07 X;X] _phm’—l E £ X;X;.
i=1 i=1

The final detail is to justify the replacement of &; with ¢; in Sq. The consistency of b for
B is sufficient for the argument. (Actually, residuals based on any consistent estimator
of B would suffice for this estimator, but as of now, b or byy is the only one in hand.)
The end result is that the White heteroscedasticity consistent estimator

1/1 T 1 !
Est.Asy. Var[b] = - <EX’X> — Z erxx] (;X'X>
n
i=1

= n(X’X)"1§o(X’X)!

(10-14)

can be used to estimate the asymptotic covariance matrix of b.

This result is extremely important and useful ® It implies that without actually spec-
ifying the type of heteroscedasticity, we can still make appropriate inferences based on
the results of least squares. This implication is especially useful if we are unsure of the
precise nature of the heteroscedasticity (which is probably most of the time). We will
pursue some examples in Chapter 11.

6See also Eicker (1967), Horn, Horn, and Duncan (1975), and MacKinnon and White (1985).
"We will give only a broad sketch of the proof. Formal results appear in White (1980) and (2001).

8Further discussion and some refinements may be found in Cragg (1982). Cragg shows how White’s observa-
tion can be extended to devise an estimator that improves on the efficiency of ordinary least squares.
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The extension of White’s result to the more general case of autocorrelation is much
more difficult. The natural counterpart for estimating

1 ,
Q*=;2210ijxixj -
i=1 j=
would be (10-15)

1 n n
A ’
Q.= - ZZeiejx,-xj.

i=1 j=1

But there are two problems with this estimator, one theoretical, which applies to Q. as
well, and one practical, which is specific to the latter.

Unlike the heteroscedasticity case, the matrix in (10-15) is 1/x times a sum of n?
terms, so it is difficult to conclude yet that it will converge to anything at all. This
application is most likely to arise in a time-series setting. To obtain convergence, it is
necessary to assume that the terms involving unequal subscripts in (10-15) diminish in
importance as n grows. A sufficient condition is that terms with subscript pairs |i — j|
grow smaller as the distance between them grows larger. In practical terms, observation
pairs are progressively less correlated as their separation in time grows. Intuitively, if
one can think of weights with the diagonal elements getting a weight of 1.0, then in
the sum, the weights in the sum grow smaller as we move away from the diagonal. If
we think of the sum of the weights rather than just the number of terms, then this sum
falls off sufficiently rapidly that as n grows large, the sum is of order 7 rather than n?.
Thus, we achieve convergence of Q. by assuming that the rows of X are well behaved
and that the correlations diminish with increasing separation in time. (See Sections 5.3,
12.5, and 20.5 for a more formal statement of this condition.)

The practical problem is that Q, need not be positive definite. Newey and West
(1987a) have devised an estimator that overcomes this difficulty:

. 1 L n ,
Q. =SS0+ ; Z Z wiecer (X X,_; + Xt—lx;),
I=1 t=il+1 (10-16)
l
(L+1)

The Newey—West autocorrelation consistent covariance estimator is surprisingly simple
and relatively easy to implement.’ There is a final problem to be solved. It must be
determined in advance how large L is to be. We will examine some special cases in
Chapter 12, but in general, there is little theoretical guidance. Current practice specifies
L ~ T4, Unfortunately, the result is not quite as crisp as that for the heteroscedasticity
consistent estimator.

We have the result that b and by are asymptotically normally distributed, and
we have an appropriate estimator for the asymptotic covariance matrix. We have not
specified the distribution of the disturbances, however. Thus, for inference purposes,
the F statistic is approximate at best. Moreover, for more involved hypotheses, the
likelihood ratio and Lagrange multiplier tests are unavailable. That leaves the Wald

W[—l

Both estimators are now standard features in modern econometrics computer programs. Further results on
different weighting schemes may be found in Hayashi (2000, pp. 406—410).
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statistic, including asymptotic “f ratios,” as the main tool for statistical inference. We
will examine a number of applications in the chapters to follow.

The White and Newey-West estimators are standard in the econometrics literature.
We will encounter them at many points in the discussion to follow.

4 GENERALIZED METHOD OF MOMENTS
ESTIMATION

We will analyze this estimation technique in some detail in Chapter 18, so we will only
sketch the important results here. It is useful to consider the instrumental variables
case, as it is fairly general and we can easily specialize it to the simpler regression model
if that is appropriate. Thus, we depart from the model specification in (10-1), but at
this point, we no longer require that £[e; |x;] = 0. Instead, we adopt the instrumental
variables formulation in Section 10.2.4. That is, our model is

yi=xp+e
Ele1z] =0

for K variables in x; and for some set of L instrumental variables, z;, where L > K.
The earlier case of the generalized regression model arises if z; = x;, and the classical
regression form results if we add £ = I as well, so this is a convenient encompassing
model framework.

In the next section on generalized least squares estimation, we will consider two
cases, first with a known €, then with an unknown € that must be estimated. In esti-
mation by the generalized method of moments neither of these approaches is relevant
because we begin with much less (assumed) knowledge about the data generating pro-
cess. In particular, we will consider three cases:

® Classical regression: Var[e; | X, Z] = 02
Heteroscedasticity: Var[e; | X, Z] = o
¢ Generalized model: Covl]e,, & | X, Z] =0 a)ts,

where Z and X are the nx Land n x K observed data matrices. (We assume, as will often
be true, that the fully general case will apply in a time series setting. Hence the change
in the subscripts.) No specific distribution is assumed for the disturbances, conditional or
unconditional.

The assumption E|g; |z;] = 0 implies the following orthogonality condition:

Cov[zi,e:.] =0, or E[z;(y,—x.8)]=0
By summing the terms, we find that this further implies the population moment

equation,

= E[m(B)] = 0. (10-17)

1 n
= n(y —xB)
n i=1

This relationship suggests how we might now proceed to estimate 8. Note, in fact, that if
z; = x;, then this is just the population counterpart to the least squares normal equations.
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So, as a guide to estimation, this would return us to least squares. Suppose, we now
translate this population expectation into a sample analog, and use that as our guide for
estimation. That is, if the population relationship holds for the true parameter vector,
B. supposc we attempt to mimic this result with a sample counterpart, or empirical
moment equation,

1< A 1 " A«
[; > mi- xzm} = l; > m,«(m} =m(p) =0. (10-18)
i=1 i=1

In the absence of other information about the data generating process, we can use the
empirical moment equation as the basis of our estimation strategy.

The empirical moment condition is L equations (the number of variables in Z) in K
unknowns (the number of parameters we seek to estimate). There are three possibilities
to consider:

1. Underidentified: L < K. If there are fewer moment equations than there are pa-
rameters, then it will not be possible to find a solution to the equation system in (10-18).
With no other information, such as restrictions which would reduce the number of free
parameters, there is no need to proceed any further with this case.

For the identified cases, it is convenient to write (10-18) as

. 1 1 A '
m(g) = (ZZ’y> - (;Z’X)ﬂ. (10-19)

2. Exactly identified. If L = K, then you can easily show (we leave it as an exercise)
that the single solution to our equation system is the familiar instrumental variables
estimator,

B=@ZX)"'Zy. (10-20)

3. Overidentified. If L > K. then there is no unique solution to the equation system
m(,B) = 0. In this instance, we need to formulate some strategy to choose an estimator.
One intuitively appealing possibility which has served well thus far is “least squares.” In
this instance, that would mean choosing the estimator based on the criterion function

Ming ¢ = m(8) m(B).
We do keep in mind, that we will only be able to minimize this at some positive value;
there is no exact solution to (10-18) in the overidentified case. Also, you can verify that
if we treat the exactly identified case as if it were overidentified, that is, use least squares

anyway, we will still obtain the I'V estimator shown in (10-20) for the solution to case (2).
For the overidentified case, the first order conditions are

dq am'(B) Y NPT PF WINpP
£‘2< ) >m(ﬂ)—2G(ﬁ)m(ﬂ)

1 1 1,4
- 2<—x'z> (—Z’y - ~z'x,s> -
n n n

We leave as exercise to show that the solution in both cases (2) and (3) is now

B =XZ)ZX)] ' XZ)ZYy). (10-22)

(10-21)
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The estimator in (10-22) is a hybrid that we have not encountered before, though if
L = K, then it does reduce to the earlier one in (10-20). (In the overidentified case,
(10-22) is not an IV estimator, it is, as we have sought, a method of moments estimator.)

It remains to establish consistency and to obtain the asymptotic distribution and
an asymptotic covariance matrix for the estimator. These are analyzed in detail in
Chapter 18. Our purpose here is only to sketch the formal result, so we will merely
claim the intermediate results we need:

AssumpTiION GMML1.  Convergence of the moments. The population moment con-
verges in probability to its population counterpart. That is, m(8) — 0. Different
circumstances will produce different kinds of convergence, but we will require it
in some form. For the simplest cases, such as a model of heteroscedasticity, this
will be convergence in mean square. Certain time series models that involve cor-
related observations will necessitate some other form of convergence. But, in any
of the cases we consider, we will require the general result, plim m(g8) = 0.

Assumption GMM2.  Identification. The parameters are identified in terms of the
moment equations. Identification means, essentially, that a large enough sample
will contain sufficient information for us actually to estimate 8 consistently using
the sample moments. There are two conditions which must be met—an order
condition, which we have already assumed (L > K), and a rank condition, which
states that the moment equations are not redundant. The rank condition implies
the order condition, so we need only formalize it:

Identification condition for GMM Estimation: The L x K matrix
. - om 1 & omy
rg)=E[G = plim G(B) = plim—; = plim—

(B) = E[G(®) = plim G(B) = plim7; = plim ; ¥
must have (full) row rank equal to L.!” Since this requires L > K, this implies the order
condition. This assumption means that this derivative matrix converges in probability
to its expectation. Note that we have assumed, in addition, that the derivatives, like
the moments themselves, obey a law of large numbers — they converge in probability to
their expectations.

AssumpTioN GMM3.  Limiting Normal Distribution for the Sample Moments.
The population moment obeys a central limit theorem or some similar variant.
Since we are studying a generalized regression model, Lindberg-Levy (D.19.)
will be too narrow—the observations will have different variances. Lindberg—
Feller (D.19.A) suffices in the heteroscedasticity case, but in the general case, we
will ultimately require something more general. These theorems are discussed in
Section 12.4 and invoked in Chapter 18.

Strictly speaking, we only require that the row rank be at least as large as K, so there could be redundant,
that js, functionally dependent, moments, so long as there are at least K that are functionally independent.
The case of rank (I') greater than or equal to K but less than L can be ignored.
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It will follow from these assumptions (again, at this point we do this without proof)
that the GMM estimators that we obtain are, in fact, consistent. By virtue of the Slutsky
theorem, we can transfer our limiting results above to the empirical moment equations.
A proof of consistency of the GMM estimator (pursued in Chapter 18) will be based
on this result.

To obtain the asymptotic covariance matrix we will simply invoke a result we will
obtain more formally in Chapter 18 for generalized method of moments estimators.
That is,

Asy. Var[B] = [I‘ rr'r {Asy. Var[nm($)]}T[I'T] " .
For the particular model we are studying here,
m(f) = (1/n)(Z'y — Z'XB),
G = 1/mZ'X
I'(B) = Qzx (from Section 10.2.4).

(You should check in the preceding expression that the dimensions of the particular
matrices and the dimensions of the various products produce the correctly configured
matrix that we seek.) The remaining detail, which is the crucial one for the model we
are examining, is for us to determine

V = Asy. Var[/nm(B)].

Given the form of m(g),

1
= —Var
n

n n n ’
1 Y £/
ZiEj| = — g LL),']'Z,'Z]» =0
; n- - n
i=1 i=1 ]:1

for the most general case. Note that this is precisely the expression that appears in
(10-6), so the question that arose there arises here once again. That is, under what
conditions will this converge to a constant matrix? We take the discussion there as
given. The only remaining detail is how to estimate this matrix. The answer appears in
Section 10.3, where we pursued this same question in connection with robust estimation
of the asymptotic covariance matrix of the least squares estimator. To review then, what
we have achieved to this point is to provide a theoretical foundation for the instrumental
variables estimator. As noted earlier, this specializes to the least squares estimator. The
estimators of V for our three cases will be

e  (lassical regression:

‘A, (¢ e/n) Z _ @ e/n)

o Heteroscedastic:

V= % e’zz, (10-23)
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o General:

1

V=- lz e Lz, +Z Z < g 1)>e,e,_1(z,z;_l +Zz—zzf)1 :

I=1 t=I+1

We should observe, that in each of these cases, we have actually used some information
about the structure of . If it is known only that the terms in m(g) are uncorrelated,
then there is a convenient estimator available,

- 1 « A A
V=—3 mipm By
i=1

that is, the natural, empirical variance estimator. Note that this is what is being used in
the heteroscedasticity case directly above.
Collecting all the terms so far, then, we have

J RN
Est.Asy. Var[] = =[G(BYG(B)]'GBYVGB[GBYGB)]™
n (10-24)
=n[X'Z)ZX)]' X'V ZX)[(XZ(Z'X)]™!

The preceding would seem to endow the least squares or method of moments esti-
mators with some degree of optimality, but that is not the case. We have only provided
them with a different statistical motivation (and established consistency). We now con-
sider the question of whether, since this is the generalized regression model, there is
some better (more efficient) means of using the data. As before, we merely sketch the
results.

The class of minimum distance estimators is defined by the solutions to the criterion
function

Ming ¢ = m(8)'Wm(pB).

where W is any positive definite weighting matrix. Based on the assumptions made
above, we will have the following theorem, which we claim without proof at this point:

THEOREM 10.5 Minimum Distance Estimators

If plimm(B) =0 and if W is a positive definite matrix, then plim 8 = Argmin[q =
m(B)Wm(B)| = B. The minimum distance estimator is consistent. It is also asymp-
totically normally distributed and has asymptotic covariance matrix

" 1 - _ _ - _
Asy. Var[Byp] = ;[(;’WG]*G'WVWG[G'WG]-1

Note that our entire preceding analysis was of the simplest minimum distance estimator,
which has W=1. The obvious question now arises, if any W produces a consistent
estimator, is any W better than any other one, or is it simply arbitrary? There is a firm
answer, for which we have to consider two cases separately:

¢  Exactly identified case: If L= K that is, if the number of moment conditions is the
same as the number of parameters being estimated, then W is irrelevant to the
solution, so on the basis of simplicity alone, the optimal W is L.
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e  Overidentified case: In this case, the “optimal” weighting matrix, that is, the W
which produces the most efficient estimator is W = V!, That is, the best

weighting matrix is the inverse of the asymptotic covariance of the moment vector.

THEOREM 10.6 Generalized Method of Moments Estimator
The Minimum Distance Estimator obtained by using W = V™! is the Generalized
Method of Moments, or GMM estimator. The GMM estimator is consistent,
asymptotically normally distributed, and has asymptotic covariance matrix equal
to

.
.

R |
Asy. Var[Bouul = ;[GV 'G]™!

For the generalized regression model, these are
Boum = (XDV I @X)] "' X'Z)V"!(Z'y)
and

Asy. Var[BGMM] = [(X’Z)V(Z’X)]_1

We conclude this discussion by tying together what should seem to be a loose end.
The GMM estimator is computed as the solution to

Ming g = m(g) {Asy. Var[ Jam(B)]} " m(B),

which suggests that the weighting matrix is a function of the thing we are trying to
estimate. The process of GMM estimation will have to proceed in two steps: Step 1 is
to obtain an estimate of V, then Step 2 will consist of using the inverse of this V as the
weighting matrix in computing the GMM estimator. We will return to this in Chapter 18,
so we note directly, the following is a common strategy:

a consistent estimator of 8. Then, estimate V with

in the heteroscedasticity case (i.e., the White estlmator) or, for the more general case,
the Newey—West estimator in (10-23).

At this point, the observant reader should have noticed that in all of the preceding,
we have never actually encountered the simple instrumental variables estimator that
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we introduced in Section 5.4. In order to obtain this estimator, we must revert back
to the classical, that is homoscedastic and nonautocorrelated disturbances case. In that
instance, the weighting matrix in Theorem 10.5 will be W = (Z'Z)! and we will obtain
the apparently missing result.

10.5 EFFICIENT ESTIMATION BY GENERALIZED
LEAST SQUARES ‘

Efficient estimation of 8 in the generalized regression model requires knowledge of
Q. To begin, it is useful to consider cases in which @ is a known, symmetric, positive
definite matrix. This assumption will occasionally be true, but in most models, £ will
contain unknown parameters that must also be estimated. We shall examine this case
in Section 10.6.

10.5.1 GENERALIZED LEAST SQUARES (GLS)

Since @ is a positive definite symmetric matrix, it can be factored into
@ =CAC,

where the columns of C are the characteristic vectors of € and the characteristic roots
of @ are arrayed in the diagonal matrix A. Let A'? be the diagonal matrix with ith
diagonal element JAi,and let T = CA'2,. Then = TT'. Also, let P’ = CA™72, 50
©~! = P'P. Premultiply the model in (10-1) by P to obtain

Py = PXB + Pe
or
Vi« = XuB + & ' (10-25)
The variance of e, is
E[e.c.] = PaQP = o,

so the classical regression model applies to this transformed model. Since €2 is known,
y. and X, are observed data. In the classical model, ordinary least squares is efficient;
hence,

B =X X)Xy,
= (X'P'PX)"X'P'Py
— (XISZVIX)—Ixfﬂ—ly
is the efficient estimator of 8. This estimator is the generalized least squares (GLS) or
Aitken (1935) estimator of 8. This estimator is in contrast to the ordinary least squares
(OLS) estimator, which uses a “weighting matrix,” L, instead of @ !. By appealing to

the classical regression model in (10-25), we have the following theorem, which includes
the generalized regression model analogs to our results of Chapters 4 and 5.
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THEOREM 10.7 Properties of the Generalized Least Squares
Estimator
If Ele, | X, ] =0, then

E[BIX.] = E[(XX,) Xy, | X,] = B+ E[(X.X.) ' Xe, | X,] = 8

*

The GLS estimator B is unbiased. This result is equivalent to E[Pe|PX] = 0,
but since P is a matrix of known constants, we return to the familiar requirement
E[e|X] = 0. The requirement that the regressors and disturbances be uncorre-
lated is unchanged.

The GLS estimator is consistent if plim(1/n)X! X, = Q,, where Q, is a finite
positive definite matrix. Making the substitution, we see that this implies

-1 (10-26)

plim[(1/mX'@"'X]™! = Q;
We require the transformed data X, = PX, not the original data X, to be well
behaved.!! Under the assumption in (10-1), the following hold:

The GLS estimator is asymptotically normally distributed, with mean B and

sampling variance
Var[f | X,] = o2(X.X) ! = o2(X'Q7IX) "L (10-27)

The GLS estimator B is the minimum variance linear unbiased estimator in
the generalized regression model. This statement follows by applying the Gauss—
Markov theorem to the model in (10-25). The result in Theorem 10.7 is Aitken’s
(1935) Theorem, and B is sometimes called the Aitken estimator. This broad result
includes the Gauss—Markov theorem as a special case when @ = L.

For testing hypotheses, we can apply the full set of results in Chapter 6 to the trans-
formed model in (10-25). For testing the J linear restrictions, R = q, the appropriate
statistic is
RB - @'[RZXX) IR RE—q) _ (2l6.—&'8)/]

; J - 62 ’

Fl/,n-K]=
where the residual vector is
&= \ X*B

and

s2_ &% _(-Xpe(y—Xp)

= 10-28
n—K n—K ( )

The constrained GLS residuals, &, =y, — X*ﬁc, are based on
ﬁc — ﬁ _ [X/szflxl—lRI[R(XISZA—lX)flRI]—I(Rﬂ'\ _ q).lz

UOnce again, to allow a time trend, we could weaken this assumption a bit.
2Note that this estimator is the constrained OLS estimator using the transformed data.
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To summarize, all the results for the classical model, including the usual inference
procedures, apply to the transformed model in (10-25).

There is no precise counterpart to R? in the generalized regression model. Alter-
natives have been proposed, but care must be taken when using them. For exampie,
one choice is the R? in the transformed regression, (10-25). But this regression need
not have a constant term, so the R? is not bounded by zero and one. Even if there is
a constant term, the transformed regression is a computational device, not the model
of interest. That a good (or bad) fit is obtained in the “model” in (10-25) may be of no
interest; the dependent variable in that model y, is different from the one in the model
as originally specified. The usual R? often suggests that the fit of the model is improved
by a correction for heteroscedasticity and degraded by a correction for autocorrelation,
but both changes can often be attributed to the computation of y,. A more appealing
fit measure might be based on the residuals from the original model once the GLS
estimator is in hand, such as

(y - XB)'(y — XB)
2?21 (.Vi - }_’ )2
Like the earlier contender, however, this measure is not bounded in the unit interval.

In addition, this measure cannot be reliably used to compare models. The generalized
least squares estimator minimizes the generalized sum of squares

ee.=(y—Xp'e (y-Xp),

RE=1-

not €’e. As such, there is no assurance, for example, that dropping a variable from the
model will result in a decrease in RZ, as it will in R2. Other goodness-of-fit measures,
designed primarily to be a function of the sum of squared residuals (raw or weighted by
Q") and to be bounded by zero and one, have been proposed.'? Unfortunately, they
all suffer from at least one of the previously noted shortcomings. The R?-like measures
in this setting are purely descriptive.

10.5.2 FEASIBLE GENERALIZED LEAST SQUARES

To use the results of Section 10.5.1, 2 must be known. If @ contains unknown parameters
that must be estimated, then generalized least squares is not feasible. But with an
unrestricted @, there are n(n + 1)/2 additional parameters in 2. This number is far
too many to estimate with n observations. Obviously, some structure must be imposed
on the model if we are to proceed.

The typical problem involves a small set of parameters @ such that = €(6). A
commonly used formula in time series settings is

1 0 p2 p3 pn~1
o1 p pr o pt?
Q(p) = , ,
pn—l pn—z ‘ 1

B3See, example, Judge et al. (1985, p. 32) and Buse (1973).
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which involves only one additional unknown parameter. A model of heteroscedasticity
that also has only one new parameter is
o =07, (10-29)

12

Suppose, then, that 8 is a consistent estimator of 8. (We consider later how such an
estimator might be obtained.) To make GLS estimation feasible, we shall use = SZ(@)
instead of the true 2. The issue we consider here is whether using £(6) requires us to
change any of the results of Section 10.5.1.

It would seem that if plim @ = 0, then using € is asymptotically equivalent to using
the true 2.1 Let the feasible generalized least squares (FGLS) estimator be denoted

~
A

B =X X)) IXQly.

Conditions that imply thatﬁ is asymptotically equivalent to § are

plim le@z—lx> - <]x'szlx)] =0 O (10:30)
n n
and
plim Kix'ﬁle) - (ix'nvleﬂ =0 (10-31)
v NG . ;

The first of these equations states that if the weighted sum of squares matrix based on
the true € converges to a positive definite matrix, then the one based on € converges
to the same matrix. We are assuming that this is true. In the second condition, if the
transformed regressors are well behaved, then the right-hand side sum will have a
limiting normal distribution. This condition is exactly the one we used in Chapter 5 to
obtain the asymptotic distribution of the least squares estimator; here we are using the
same results for X, and e,. Therefore, (10-31) requires the same condition to hold when
Q is replaced with .1

These conditions, in principle, must be verified on a case-by-case basis. Fortunately,
in most familiar settings, they are met. If we assume that they are, then the FGLS
estimator based on  has the same asymptotic properties as the GLS estimator. This
result is extremely useful. Note, especially, the following theorem.

sy

THEOREM 10.8 Efficiency of the FGLS Estimator

An asympiotically efficient FGLS estimator does not require that we have an
efficient estimator of 8; only a consistent one is required to achieve full efficiency
for the FGLS estimator.

B B e B e

14This equation is sometimes denoted plim & = Q. Since € is # x n, it cannot have a probability limit. We
use this term to indicate convergence element by element.

3The condition actually requires only that if the right-hand sum has any limiting distribution, then the left-
hand one has the same one. Conceivably, this distribution might not be the normal distribution, but that seems
unlikely except in a specially constructed, theoretical case. : .
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Except for the simplest cases, the finite-sample properties and exact distributions
of FGLS estimators are unknown. The asymptotic efficiency of FGLS estimators may
not carry over to small samples because of the variability introduced by the estimated
2. Some analyses for the case of heteroscedasticity are given by Taylor (1977). A model
of autocorrelation is analyzed by Griliches and Rao (1969). In both studies, the authors
find that, over a broad range of parameters, FGLS is more efficient than least squares.
But if the departure from the classical assumptions is not too severe, then least squares
may be more efficient than FGLS in a small sample.

6 MAXIMUM LIKELIHOOD ESTIMATION

This section considers efficient estimation when the disturbances are normaily dis-
tributed. As before, we consider two cases, first, to set the stage, the benchmark case of
known €, and, second, the more common case of unknown .16

If the disturbances are multivariate normally distributed, then the log-likelihood
function for the sample is

n n 2 1 ro-1 1
lnL:—Eln(Zn)—zlna — 52y~ Xpye (y—Xp) — 5 In|Qy. (10-32)

Since  is a matrix of known constants, the maximum likelihood estimator of 8 is the
vector that minimizes the generalized sum of squares,

S.(8)=(y-XB)'Q '(y—-XB)

(hence the name generalized least squares). The necessary conditions for maximizing L
are

oln L 1 1 =
Is'z—l __X, * —-X* - ’
=g = 2XRT0-Xp) =Xy B)=0
dln L n 1 1
— (v— Q- Xg 10-
307~ 392 T 3a Y T XBVRT(y ) 1039
n 1 ’ X
= 22 T s ¥ mXBV (3 — X ) =0,

The solutions are the OLS estimators using the transformed data: ‘
B = X X)Xy, = XX 'XQly, (10-34)
. 1 S, .
=~ ¥= = X.B)'(y: - XuB)
) (10-35)
=~ (y-Xpye ' y-Xp),

which implies that with normally distributed disturbances, generalized least squares is

16The method of maximum likelihood estimation is developed in Chapter 17.
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also maximum likelihood. As in the classical regression model, the maximum likelihood
estimator of o is biased. An unbiased estimator is the one in (10-28). The conclusion,
which would be expected, is that when € is known, the maximum likelihood estimator
is generalized least squares.

When € is unknown and must be estimated, then it is necessary to maximize the log
likelihood in (10-32) with respect to the full set of parameters [, o2, ®]simultaneously.
Since an unrestricted £ alone contains n(n 4+ 1)/2 — 1 parameters, it is clear that some
restriction will have to be placed on the structure of € in order for estimation to proceed.
We will examine several applications in which € = 2(#) for some smaller vector of
parameters in the next two chapters, so we will note only a few general results at this
point.

(a) For a given value of 6 the estimator of 8 would be feasible GLS and the estimator
of o2 would be the estimator in (10-35).

(b) The likelihood equations for # will generally be complicated functions of g and
02, so joint estimation will be necessary. However, in many cases, for given values
of B and o2, the estimator of @ is straightforward. For example, in the model of
(10-29), the iterated estimator of & when B and o2 and a prior value of # are given
is the prior value plus the slope in the regression of (e?/62 — 1) on z;.

The second step suggests a sort of back and forth iteration for this model that will work
in many situations —starting with, say, OLS, iterating back and forth between (a) and (b)
until convergence will produce the joint maximum likelihood estimator. This situation
was examined by Oberhofer and Kmenta (1974), who showed that under some fairly
weak requirements, most importantly that @ notinvolve o or any of the parametersin g,
this procedure would produce the maximum likelihood estimator. Another implication
of this formulation which is simple to show (we leave it as an exercise) is that under the
Oberhofer and Kmenta assumption, the asymptotic covariance matrix of the estimator
is the same as the GLS estimator. This is the same whether € is known or estimated,
which means that if @ and 8 have no parameters in common, then exact knowledge of
@ brings no gain in asymptotic efficiency in the estimation of B over estimation of B with
a consistent estimator of 2.

10.7 SUMMARY AND CONCLUSIONS

This chapter has introduced a major extension of the classical linear model. By allowing
for heteroscedasticity and autocorrelation in the disturbances, we expand the range
of models to a large array of frameworks. We will explore these in the next several
chapters. The formal concepts introduced in this chapter include how this extension
affects the properties of the least squares estimator, how an appropriate estimator
of the asymptotic covariance matrix of the least squares estimator can be computed
in this extended modeling framework, and, finally, how to use the information about
the variances and covariances of the disturbances to obtain an estimator that is more
efficient than ordinary least squares.
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Key Terms and Concepts

e Aitken’s Theorem ¢ Heteroscedasticity ¢ Orthogonality condition

e Asymptotic properties e Instrumental variables * Panel data

¢ Autocorrelation estimator e Parametric

« Efficient estimator * Method of moments ¢ Population moment

¢ Feasible GLS estimator equation

¢ Finite sample properties ¢ Newey-West estimator ¢ Rank condition

» Generalized least squares ¢ Nonlinear least squares ¢ Robust estimation
(GLS) estimator ¢ Semiparametric

» Generalized regression ¢ Order condition * Weighting matrix
model ¢ Ordinary least squares ¢ White estimator

¢ GMM estimator (OLS)

Exercises
1. What is the covariance matrix, Cov[8, B —b], of the GLS estimator f=

X'Q7'X)"'X'Q@!y and the difference between it and the OLS estimator, b =
(X’X)~'X'y? The result plays a pivotal role in the development of specification
tests in Hausman (1978).

This and the next two exercises are based on the test statistic usually used to test a
set of J linear restrictions in the generalized regression model:

_ RB—@'[RX'2'X) 'R RE —q)//
(y—Xpye 'y - Xp)/(n— K)

where B is the GLS estimator. Show that if € is known, if the disturbances are
normally distributed and if the null hypothesis, Rf = q, is true, then this statistic
is exactly distributed as F with J and n — K degrees of freedom. What assump-
tions about the regressors are needed to reach this conclusion? Need they be non-
stochastic?

Now suppose that the disturbances are not normally distributed, although € is still
known. Show that the limiting distribution of previous statistic is (1/J) times a chi-
squared variable with J degrees of freedom. (Hint: The denominator converges to
02.) Conclude that in the generalized regression model, the limiting distribution of
the Wald statistic

F[J.,n— K]

W = (RB — q)'{R(Est. Var[8])R’} (R} — q)

is chi-squared with J degrees of freedom, regardless of the distribution of the distur-
bances, as long as the data are otherwise well behaved. Note that in a finite sample,
the true distribution may be approximated with an F[J, n — K] distribution. It is a
bit ambiguous, however, to interpret this fact as implying that the statistic is asymp-
totically distributed as F'with J and n — K degrees of freedom, because the limiting
distribution used to obtain our result is the chi-squared, not the F. In this instance,
the F[J,n — K] is a random variable that tends asymptotically to the chi-squared
variate.

Finally, suppose that & must be estimated, but that assumptions (10-27) and
(10-31) are met by the estimator. What changes are required in the development
of the previous problem?
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5.

In the generalized regression model, if the K columns of X are characteristic vectors

of @, then ordinary least squares and generalized least squares are identical. (The

result is actually a bit broader; X may be any linear combination of exactly K

characteristic vectors. This result is Kruskal’s Theorem.)

a. Prove the result directly using matrix algebra.

b. Prove that if X contains a constant term and if the remaining columns are in
deviation form (so that the column sum is zero), then the model of Exercise 8
below is one of these cases. (The seemingly unrelated regressions model with
identical regressor matrices, discussed in Chapter 14, is another.)

In the generalized regression model, suppose that  is known.

a. What is the covariance matrix of the OLS and GLS estimators of 8?

b. What is the covariance matrix of the OLS residual vector e = y — Xb?

c. What is the covariance matrix of the GLS residual vector & = y — Xf?

d. What is the covariance matrix of the OLS and GLS residual vectors?

Suppose that y has the pdf f(y|x) = (1/x'B)e ¥/#® y > 0.

Then E[y|x] = B'x and Var[y|x] = (8'x)?. For this model, prove that GLS
and MLE are the same, even though this distribution involves the same parameters
in the conditional mean function and the disturbance variance.

Suppose that the regression model is y = ;v + ¢, where ¢ has a zero mean, constant

variance, and equal correlation p across observations. Then Covle;, &;]=02p if

[ # j.Prove that the least squares estimator of u is inconsistent. Find the charac-

teristic roots of £ and show that Condition 2. after Theorem 10.2 is violated.
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HETEROSCEDASTICITY

11.1 INTRODUCTION

Regression disturbances whose variances are not constant across observations are het-
eroscedastic. Heteroscedasticity arises in numerous applications, in both cross-section
and time-series data. For example, even after accounting for firm sizes, we expect to
observe greater variation in the profits of large firms than in those of small ones. The vari-
ance of profits might also depend on product diversification, research and development
expenditure, and industry characteristics and therefore might also vary across firms of
similar sizes. When analyzing family spending patterns, we find that there is greater vari-
ation in expenditure on certain commodity groups among high-income families than
low ones due to the greater discretion allowed by higher incomes.!
In the heteroscedastic regression model,
Var[e; | x;] = o-,-z, i=1,...,n.

‘We continue to assume that the disturbances are pairwise uncorrelated. Thus,

w, 0 0 --- 0 o2 0 0 - 0
0 w 0 --. 0 o O

Elee' |X] = 0’ = o? i = 2
0 0 0 -+ w, 0O 0 0 o2

n

It will sometimes prove useful to write 67 = o2w;. This form is an arbitrary scaling
which allows us to use a normalization,

() =Y w=n -

This makes the classical regression with homoscedastic disturbances a simple special
case with w; = 1,i = 1, ..., n. Intuitively, one might then think of the ws as weights
that are scaled in such a way as to reflect only the variety in the disturbance variances.
The scale factor o2 then provides the overall scaling of the disturbance process.

Example 11.1 Heteroscedastic Regression
The data in Appendix Table F9.1 give monthly credit card expenditure for 100 individuals,
sampled from a larger sample of 13,444 people. Linear regression of monthly expenditure on
a constant, age, income and its square, and a dummy variable for home ownership using the
72 observations for which expenditure was nonzero produces the residuals plotted in Fig-
ure 11.1. The pattern of the residuals is characteristic of a regression with heteroscedasticity.

1Prais and Houthakker (1955).
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GURE 11.1  Plot of Residuals Against |

This chapter will present the heteroscedastic regression model, first in general terms,
then with some specific forms of the disturbance covariance matrix. We begin by ex-
amining the consequences of heteroscedasticity for least squares estimation. We then
consider robust estimation, in two frameworks. Section 11.2 presents appropriate esti-
mators of the asymptotic covariance matrix of the least squares estimator. Section 11.3
discusses GMM estimation. Sections 11.4 to 11.7 present more specific formulations of
the model. Sections 11.4 and 11.5 consider generalized (weighted) least squares, which
requires knowledge at least of the form of . Section 11.7 presents maximum likelihood
estimators for two specific widely used models of heteroscedasticity. Recent analyses
of financial data, such as exchange rates, the volatility of market returns, and inflation,
have found abundant evidence of clustering of large and small disturbances,” which
suggests a form of heteroscedasticity in which the variance of the disturbance depends
on the size of the preceding disturbance. Engle (1982) suggested the AutoRegressive,
Conditionally Heteroscedastic, or ARCH, model as an alternative to the standard time-
series treatments. We will examine the ARCH model in Section 11.8.

2 ORDINARY LEAST SQUARES ESTIMATION

We showed in Section 10.2 that in the presence of heteroscedasticity, the least squares
estimator b is still unbiased, consistent, and asymptotically normally distributed. The

ZPioneering studies in the analysis of macroeconomic data include Engle (1982, 1983) and Cragg (1982).
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asymptotic covariance matrix is
1 ’ ! : 1 ’ : 1 (4 !
Asy. Var[b] = phm X'X plim —X'@X | { plim ;X X .
n
Estimation of the asymptotic covariance matrix would be based on
Var[b|X] = X'X)! ( 2 Z W;X; X ) X'x)" 1.
[See (10-5).] Assuming, as usual, that the regressors are well behaved, so that (X'X /)

converges to a positive definite matrix, we find that the mean square consistency of b
depends on the limiting behavior of the matrix:

X'eX _ .
Q= - Z XX}, 11-1)

If Q;; converges to a positive definite matrix Q*, then as n — oo, b will converge to 8
in mean square. Under most circumstances, if w; is finite for all {, then we would expect
this result to be true. Note that Qj; is a weighted sum of the squares and cross products
of x with weights w; / n, which sum to 1. We have already assumed that another weighted
sum X'X/n, in which the weights are 1/#, converges to a positive definite matrix Q, so it
would be surprising if Q; did not converge as well. In general, then, we would expect that

2
b< N[ﬁ, U—Q‘IQ*QI} . with Q* = plim Q.
n
A formal proof is based on Section 5.2 with Q; = WiX;X].

11.2.1 INEFFICIENCY OF LEAST SQUARES

It follows from our earlier results that b is inefficient relative to the GLS estimator. By
how much will depend on the setting, but there is some generality to the pattern. As
might be expected, the greater is the dispersion in w; across observations, the greater
the efficiency of GLS over OLS. The impact of this on the efficiency of estimation will
depend crucially on the nature of the disturbance variances. In the usual cases, in which
w; depends on variables that appear elsewhere in the model, the greater is the dispersion
in these variables, the greater will be the gain to using GLS. It is important to note,
however, that both these comparisons are based on knowledge of €. In practice, one of
two cases 1s likely to be true. If we do have detailed knowledge of ®, the performance
of the inefficient estimator is a moot point. We will use GLS or feasible GLS anyway. In
the more common case, we will not have detailed knowledge of , so the comparison
is not possible.

11.2.2 THE ESTIMATED COVARIANCE MATRIX OF b

If the type of heteroscedasticity is known with certainty, then the ordinary least squares
estimator is undesirable; we should use generalized least squares instead. The precise
form of the heteroscedasticity is usually unknown, however. In that case, generalized
least squares is not usable, and we may need to salvage what we can from the results of
ordinary least squares.
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The conventionally estimated covariance matrix for the least squares estimator
o2(X'X)"! is inappropriate; the appropriate matrix is o2(X’X) "1 (X'2X)(X’X) L. It is
unlikely that these two would coincide, so the usual estimators of the standard errors
are likely to be erroneous. In this section, we consider how erroneous the conventional
estimator is likely to be.

As usual,

2 e'e e’'Me

— _£re ~ 112
SEICK T Ak (11-2)

where M = I — X(X’X)~!X'. Expanding this equation, we obtain
2 ee EXX'X) X e

St= e . 7 (11-3)
Taking the two parts separately yields
e'e 1 twE[ee’ X no?
[n—K X_= n[—Kl ]:n-—K' (1-4)
[We have used the scaling tr(2) = n.] In addition,
E [s'X(X'X)AIX's x| _ HEIXX) ' Xee’X | X]}
n—K ] n—K

g 2 ’ -1
n n o X'X
= = t 1, 11-5

n—K K K n ) ”] (1-5)
where Q is defined in (11-1). As n — oo, the term in (11-4) will converge to 0. The
termin (11-5) will converge to zero if b is consistent because both matrices in the product
are finite. Therefore:

If b is consistent, then lim E[s?] = 0.

n—oo

It can also be shown—we leave it as an exercise —that if the fourth moment of every
disturbance is finite and all our other assumptions are met, then

lim Var [ ¢ eK] = lim Var [ d EK] =0.

H—>0C n— n—oo n —

This result implies, therefore, that:

If plimb = B, then plims? = o2.
Before proceeding, it is useful to pursue this result. The normalization tr(2) = nimplies
that

1 o?

2_z2_ 1 2 i

o°=a —nZai and o; = 32

1

Therefore, our previous convergence result implies that the least squares estimator
s? converges to plim &2, that is, the probability limit of the average variance of the
disturbances, assuming that this probability limit exists. Thus, some further assumption
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about these variances is necessary to obtain the result. (For an application, see Exercise 5
in Chapter 13.)

The difference between the conventional estimator and the appropriate (true)
covariance matrix for b is

Est. Var[b|X] — Var[b|X] = s2(X'X)"! - 2(X'X) ' (X'2X)(X'X)"".  (11-6)
In a large sample (so that s* ~ %), this difference is approximately equal to
2 /X'X -1 X ’ X'X -1
b2 PR e
n\ n n n n

The difference between the two matrices hinges on

XX XX “ (o 1<
A= —E ; —E — ,-’.=—§ 1—w)xx,, (11-8
p - < )xx <n>xx, ni:l( w)XX;,  ( )

i=1

where x; is the ith row of X. These are two weighted averages of the matrices Q; = x;x},
using weights 1 for the first term and w; for the second. The scaling tr(R) = » implies
that >, (w;/n) = 1. Whether the weighted average based on w;/n differs much from
the one using 1/n depends on the weights. If the weights are related to the values in
x;, then the difference can be considerable. If the weights are uncorrelated with x;x;,
however, then the weighted average will tend to equal the unweighted average.’

Therefore, the comparison rests on whether the heteroscedasticity is related to any
of x or x; x x;. The conclusion is that, in general: If the heteroscedasticity is not correlated
with the variables in the model, then at least in large samples, the ordinary least squares
computations, although not the optimal way to use the data, will not be misleading. For
example, in the groupwise heteroscedasticity model of Section 11.7.2, if the observations
are grouped in the subsamples in a way that is unrelated to the variables in X, then the
usual OLS estimator of Var[b] will, at least in large samples, provide a reliable estimate
of the appropriate covariance matrix. It is worth remembering, however, that the least
squares estimator will be inefficient, the more so the larger are the differences among
the variances of the groups.*

The preceding is a useful result, but one should not be overly optimistic. First, it re-
mains true that ordinary least squares is demonstrably inefficient. Second, if the primary
assumption of the analysis—that the heteroscedasticity is unrelated to the variables in
the model—1is incorrect, then the conventional standard errors may be quite far from
the appropriate values. :

11.2.3 ESTIMATING THE APPROPRIATE COVARIANCE MATRIX
FOR ORDINARY LEAST SQUARES

It is clear from the preceding that heteroscedasticity has some potentially serious im-
plications for inferences based on the results of least squares. The application of more

3Suppose, for example, that X contains a single column and that both x; and e; are independent and 1dent1cally
distributed random variables. Then x x/n converges to E[x ], whereas X'@x/n converges to Cov{wi, x; 2] +
E[wi]E[x?]. E[wi] = 1, soif w and x? are uncorrelated, then the sums have the same probability limit.

4Some general results, including analysis of the properties of the estimator based on estimated variances, are
given in Taylor (1977).
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appropriate estimation techniques requires a detailed formulation of £, however. It may
well be that the form of the heteroscedasticity is unknown. White (1980) has shown that
it is still possible to obtain an appropriate estimator for the variance of the least squares
estimator, even if the heteroscedasticity is related to the variables in X. The White
estimator [see (10-14) in Section 10.3°]

1/XX\'/1< x'x\ !
Est. Asy. Var|b] = - [ — - 2ex! | { —— ) 11-9
nsvt () (15 0n) (52 o

where e¢; is the ith least squares residual, can be used as an estimate of the asymptotic
variance of the least squares estimator.

A number of studies have sought to improve on the White estimator for OLS.®
The asymptotic properties of the estimator are unambiguous, but its usefulness in small
samples is open to question. The possible problems stem from the general result that
the squared OLS residuals tend to underestimate the squares of the true disturbances.
[That is why we use 1/(n — K) rather than 1/n in computing s?.] The end result is that
in small samples, at least as suggested by some Monte Carlo studies [e.g., MacKinnon
and White (1985)], the White estimator is a bit too optimistic; the matrix is a bit too
small, so asymptotic ¢ ratios are a little too large. Davidson and MacKinnon (1993,
p. 554) suggest a number of fixes, which include (1) scaling up the end result by a factor
n/(n — K) and (2) using the squared residual scaled by its true variance, e?/my;, instead
of 2, where m;; = 1 — x/(X'X)~'x;.” [See (4-20).] On the basis of their study, Davidson
and MacKinnon strongly advocate one or the other correction. Their admonition “One
should never use [the White estimator] because [(2)] always performs better” seems a bit
strong, but the point is well taken. The use of sharp asymptotic results in small samples
can be problematic. The last two rows of Table 11.1 show the recomputed standard
errors with these two modifications.

Example 11.2 The White Estimator
Using White’s estimator for the regression in Example 11.1 produces the results in the row
labeled “White S. E.” in Table 11.1. The two income coefficients are individually and jointly sta-
tistically significant based on the individual t ratios and F(2, 67) = [(0.244—0.064) /2]/[0.776/
(72 — 5)] = 7.771. The 1 percent critical value is 4.94.

The differences in the estimated standard errors seem fairly minor given the extreme
heteroscedasticity. One surprise is the decline in the standard error of the age coefficient.
The F testis no longer available for testing the joint significance of the two income coefficients
because it relies on homoscedasticity. A Wald test, however, may be used in any event. The
chi-squared test is based on

, et fooo01o0
W = (Rb)’[R(Est. Asy. Var[b])R'| " (Rb) whereFt_l0 00 0 1},

and the estimated asymptotic covariance matrix is the White estimator. The F statistic based
on least squares is 7.771. The Wald statistic based on the White estimator is 20.604; the 95

percent critical value for the chi-squared distribution with two degrees of freedom is 5.99, so
the conclusion is unchanged.

3See also Eicker (1967), Horn, Horn, and Duncan (1975), and MacKinnon and White (1985).
%See, e.g., MacKinnon and White (1985) and Messer and White (1984).

"They also suggest a third correction, el.2 / ml.zl., as an approximation to an estimator based on the “jackknife”

technique, but their advocacy of this estimator is much weaker than that of the other two.

/
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Constant Age OwnRent Income Income?

Sample Mean 32.08 0.36 3.369

Coefficient —237.15 —3.0818 27.941 23435 —14.997
Standard Error 199.35 5.5147 82.922 80.366 7.4693
t ratio -1.10 —0.5590 0.337 2.916 —2.008
White S.E. 212.99 3.3017 92.188 88.866 6.9446
D. and M. (1) 270.79 3.4227 95.566 92,122 7.1991
D. and M. (2) 221.09 3.4477 95.632 92.083 7.1995

R? =0.243578, s = 284.75080

Mean Expenditure = $189.02. Income is x $10,000

Tests for Heteroscedasticity: White = 14.329, Goldfeld-Quandt =15.001,
Breusch—Pagan = 41.920, Koenker-Bassett = 6.187.

(Two degrees of freedom. x? = 5.99.)

11.3 GMM ESTIMATION OF THE
HETEROSCEDASTIC REGRESSION MODEL

The GMM estimator in the heteroscedastic regression model is produced by the empir-
ical moment equations

1 - 1 A N
p in (% = xiBoum) = ;X’é (Bomm) = m(Bgym) =0. (11-10)
i=1

The estimator is obtained by minimizing

g =m’ (.BGMM) Wﬁl(ﬁcMM)

where W is a positive definite weighting matrix. The optimal weighting matrix would be

W = {Asy. Var[yam(g)]} "

which is the inverse of

Asy. Var[/nm(B)] = Asy. Var

n—oo 1

Zx,e,} = plim — Za Wi X;X] =02Q*

[see (11-1)]. The optimal weighting matrix would be [azQ*]‘l. But, recall that this
minimization problem is an exactly identified case, so, the weighting matrix is irrelevant
to the solution. You can see that in the moment equation —that equation is simply the
normal equations for least squares. We can solve the moment equations exactly, so
there is no need for the weighting matrix. Regardless of the covariance matrix of the
moments, the GMM estimator for the heteroscedastic regression model is ordinary least
squares. (This is Case 2 analyzed in Section 10.4.) We can use the results we have already
obtained to find its asymptotic covariance matrix. The result appears in Section 11.2.
The implied estimator is the White estimator in (11-9). [Once again, see Theorem 10.6.]
The conclusion to be drawn at this point is that until we make some specific assumptions
about the variances, we do not have a more efficient estimator than least squares, but
we do have to modify the estimated asymptotic covariance matrix.
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11.4 TESTING FOR HETEROSCEDASTICITY

Heteroscedasticity poses potentially severe problems for inferences based on least
squares. One can rarely be certain that the disturbances are heteroscedastic however,
and unfortunately, what form the heteroscedasticity takes if they are. Assuch, itis useful
to be able to test for homoscedasticity and if necessary, modify our estimation proce-
dures accordingly.® Several types of tests have been suggested. They can be roughly
grouped in descending order in terms of their generality and, as might be expected, in
ascending order in terms of their power.’?

Most of the tests for heteroscedasticity are based on the following strategy. Ordinary
least squares is a consistent estimator of B even in the presence of heteroscedasticity.
As such, the ordinary least squares residuals will mimic, albeit imperfectly because of
sampling variability, the heteroscedasticity of the true disturbances. Therefore, tests
designed to detect heteroscedasticity will, in most cases, be applied to the ordinary least
squares residuals.

11.41 WHITE’'S GENERAL TEST

To formulate most of the available tests, it is necessary to specify, at least in rough terms,
the nature of the heteroscedasticity. It would be desirable to be able to test a general
hypothesis of the form :

Hy - oiz =o? foralli,

H; : Not H,.

In view of our earlier findings on the difficulty of estimation in a model with » unknown
parameters, this is rather ambitious. Nonetheless, such a test has been devised by White
(1980b). The correct covariance matrix for the least squares estimator is

Var[bX] = o[ X'X] " [X'X][X'X] !, (11-11)

which, as we have seen, can be estimated using (11-9). The conventional estimator is
V = s?[X’X]~!. If there is no heteroscedasticity, then V will give a consistent estimator
of Var[b|X], whereas if there is, then it will not. White has devised a statistical test based
on this observation. A simple operational version of his test is carried out by obtaining
nR? in the regression of € on a constant and all unique variables contained in x and
all the squares and cross products of the variables in x. The statistic is asymptotically
distributed as chi-squared with P — 1 degrees of freedom, where P is the number of
regressors in the equation, including the constant.

The White test is extremely general. To carry it out, we need not make any specific
assumptions about the nature of the heteroscedasticity. Although this characteristic is
a virtue, it is, at the same time, a potentially serious shortcoming. The test may reveal

8There is the possibility that a preliminary test for heteroscedasticity will incorrectly lead us to use weighted
least squares or fail to alert us to heteroscedasticity and lead us improperly to use ordinary least squares.
Some limited results on the properties of the resulting estimator are given by Ohtani and Toyoda (1980).
Their results suggest that it is best to test first for heteroscedasticity rather than merely to assume that it is
present.

9 A study that examines the power of several tests for heteroscedasticity is Ali and Giaccotto (1984).
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heteroscedasticity, but it may instead simply identify some other specification error
(such as the omission of x> from a simple regression).'” Except in the context of a
specific problem, little can be said about the power of White’s test; it may be very low
against some alternatives. In addition, unlike some of the other tests we shall discuss,
the White test is nonconstructive. If we reject the null hypothesis, then the result of the
test gives no indication of what to do next.

11.4.2 THE GOLDFELD-QUANDT TEST

By narrowing our focus somewhat, we can obtain a more powerful test. Two tests that
are relatively general are the Goldfeld-Quandt (1965) test and the Breusch-Pagan
(1979) Lagrange multiplier test.

For the Goldfeld—Quandet test, we assume that the observations can be divided into
two groups in such a way that under the hypothesis of homoscedasticity, the disturbance
variances would be the same in the two groups, whereas under the alternative, the
disturbance variances would differ systematically. The most favorable case for this would
be the groupwise heteroscedastic model of Section 11.7.2 and Example 11.7 or a model
such as 67 = o2x? for some variable x. By ranking the observations based on this x,
we can separate the observations into those with high and low variances. The test is
applied by dividing the sample into two groups with n; and n, observations. To obtain
statistically independent variance estimators, the regression is then estimated separately
with the two sets of observations. The test statistic is

_ee/m—K)

Fln —K,ny— K] = ,
=Ko = K] = =K

11-12)
where we assume that the disturbance variance is larger in the first sample. (If not, then
reverse the subscripts.) Under the null hypothesis of homoscedasticity, this statistic has
an F distribution with n; — K and ny — K degrees of freedom. The sample value can
be referred to the standard F table to carry out the test, with a large value leading to
rejection of the null hypothesis.

To increase the power of the test, Goldfeld and Quandt suggest that a number of
observations in the middle of the sample be omitted. The more observations that are
dropped, however, the smaller the degrees of freedom for estimation in each group will
be, which will tend to diminish the power of the test. As a consequence, the choice of how
many central observations to drop is largely subjective. Evidence by Harvey and Phillips
(1974) suggests that no more than a third of the observations should be dropped. If the
disturbances are normally distributed, then the Goldfeld-Quandt statistic is exactly
distributed as F under the null hypothesis and the nominal size of the test is correct.
If not, then the F distribution is only approximate and some alternative method with
known large-sample properties, such as White’s test, might be preferable.

11.4.3 THE BREUSCH-PAGAN/GODFREY LM TEST

The Goldfeld—Quandt test has been found to be reasonably powerful when we are able
to identify correctly the variable to use in the sample separation. This requirement does
limit its generality, however. For example, several of the models we will consider allow

10Thursby (1982) considers this issue in detail.
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the disturbance variance to vary with a set of regressors. Breusch and Pagan'!! have
devised a Lagrange multiplier test of the hypothesis that 67 = o2 f(ap + &'z;), where
z; is a vector of independent variables.'”> The model is homoscedastic if @ = 0. The test
can be carried out with a simple regression:

LM = % explained sum of squares in the regression of e?/(e’e/n) on z;.

For computational purposes, let Z be the n x P matrix of observations on (1, z;), and
let g be the vector of observations of g; = ¢?/(e’e/n) — 1. Then

LM = g Z(Z'Z) ' Z'g).

Under the null hypothesis of homoscedasticity, LM has a limiting chi-squared distri-
bution with degrees of freedom equal to the number of variables in z;. This test can
be applied to a variety of models, including, for example, those examined in Exam-
ple 11.3 (3) and in Section 11.7.1

It has been argued that the Breusch-Pagan Lagrange multiplier test is sensitive to
the assumption of normality. Koenker (1981) and Koenker and Bassett (1982) suggest
that the computation of LM be based on a more robust estimator of the variance of eiz,

1< eel?
V=- A B
nz{e’ n}

The variance of &? is not necessarily equal to 20 if &; is not normally distributed. Let u
equal (e7, €3, ...,€2) and i be an n x 1 column of 1s. Then & = ¢’e/n. With this change,
the computation becomes

LM = {ﬂ (- a)Z(Z'Z)"'Z (u - @i).

Under normality, this modified statistic will have the same asymptotic distribution as the
Breusch—-Pagan statistic, but absent normality, there is some evidence that it provides a
more powerful test. Waldman (1983) has shown that if the variables in z; are the same
as those used for the White test described earlier, then the two tests are algebraically
the same.

Example 11.3 Testing for Heteroscedasticity

1. White’s Test: For the data used in Example 11.1, there are 15 variables in x ® x including
the constant term. But since Ownrent? = OwnRent and Income x Income = Income?, only 13
are unique. Regression of the squared least squares residuals on these 13 variables produces
R? = 0.199013. The chi-squared statistic is therefore 72(0.199013) = 14.329. The 95 percent
critical value of chi-squared with 12 degrees of freedom is 21.03, so despite what might seem
to be obvious in Figure 11.1, the hypothesis of homoscedasticity is not rejected by this test.
2. Goldfeld—Quandt Test: The 72 observations are sorted by Income, and then the regres-
sion is computed with the first 36 observations and the second. The two sums of squares
are 326,427 and 4,894,130, so the test statistic is F[31, 31] = 4,894,130/326,427 = 15.001.
The critical value from this table is 1.79, so this test reaches the opposite conclusion.

UBreusch and Pagan (1979).
121 agrange multiplier tests are discussed in Section 17.5.3.

13The model Uiz =02 exp(a’;) is one of these cases. In analyzing this model specifically, Harvey (1976) derived
the same test statistic.
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3. Breusch-Pagan Test: This test requires a specific alternative hypothesis. For this pur-
pose, we specify the test based on z=[1, Income, IncomeSq]. Using the least squares resid-
uals, we compute g; = €?/(e’e/72) — 1; then LM = 1g'Z(Z'Z)~'Z'g. The sum of squares
is 5,432,562.033. The computation produces LM = 41.920. The critical value for the chi-
squared distribution with two degrees of freedom is 5.99, so the hypothesis of homoscedas-
ticity is rejected. The Koenker and Bassett variant of this statistic is only 6.187, which is stili
significant but much smaller than the LM statistic. The wide difference between these two
statistics suggests that the assumption of normality is erroneous. Absent any knowledge
of the heteroscedasticity, we might use the Bera and Jarque (1981, 1982) and Kiefer and
Salmon (1983) test for normality,

x%[2] = nl(ma/s%)? + ((my — 3) /s%)]

wherem; =(1/n) Y, e/ . Under the null hypothesis of homoscedastic and normally distributed
disturbances, this statistic has a limiting chi-squared distribution with two degrees of free-
dom. Based on the least squares residuals, the value is 482.12, which certainly does lead
to rejection of the hypothesis. Some caution is warranted here, however. It is unclear what
part of the hypothesis should be rejected. We have convincing evidence in Figure 11.1 that
the disturbances are heteroscedastic, so the assumption of homoscedasticity underlying
this test is questionable. This does suggest the need to examine the data before applying a
ie specification test such as this one. ‘ '

11.5 WEIGHTED LEAST SQUARES
WHEN @ IS KNOWN

Having tested for and found evidence of heteroscedasticity, the logical next step is to
revise the estimation technique to account for it. The GLS estimator is

g =Xe'xX)"'xely.

Consider the most general case, Varle; | x;] = 07 = o%w;. Then @ is a diagonal matrix

whose ith diagonal element is 1/w;. The GLS estimator is obtained by regressing

/o1 X1/ /@1

n/Jor X2/ Jan
Py = ) on PX= ) )

Y/ N/On Xn//On,

Applying ordinary least squares to the transformed model, we obtain the weighted least
squares (WLS) estimator.

n -1 n
A= [Z WiXiX;:| [Z Wix; yl} : 11-13)
i=1 i=1

where w; = 1/w;.* The logic of the computation is that observations with smaller vari-
ances receive a larger weight in the computations of the sums and therefore have greater
influence in the estimates obtained.

1“The weights are often denoted w,-:l/(riz. This expression is consistent with the equivalent §=
[X'(02)~'X] ' X'(c2Q)"'y. The o2’s cancel, leaving the expression given previously.
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A common specification is that the variance is proportional to one of the regressors
or its square. Our earlier example of family expenditures is one in which the relevant
variable is usually income. Similarly, in studies of firm profits, the dominant variable is
typically assumed to be firm size. If

2 __ 2.2
O'i =0 .xik,

then the transformed regression model for GLS is

Y et h <ﬂ>+ﬂ2 (ﬂ)+---+i. (A1-14)
Xk Xk Xk Xk

If the variance is proportional to x; instead of x7, then the weight applied to each
observation is 1/,/x; instead of 1/x.

In (11-14), the coefficient on x; becomes the constant term. But if the variance is
proportional to any power of x; other than two, then the transformed model will no
longer contain a constant, and we encounter the problem of interpreting R? mentioned
earlier. For example, no conclusion should be drawn if the R? in the regression of y/zon
1/z and x/z is higher than in the regression of y on a constant and x for any z, including
x. The good fit of the weighted regression might be due to the presence of 1/z on both
sides of the equality.

It is rarely possible to be certain about the nature of the heteroscedasticity in a
regression model. In one respect, this problem is only minor. The weighted least squares
estimator

n -1 n
.3 = [Z WiXiXE} |:Z Wi"i)’i:l
i=1 i=1

is consistent regardless of the weights used, as long as the weights are uncorrelated with
the disturbances.

But using the wrong set of weights has two other consequences that may be less
benign. First, the improperly weighted least squares estimator is inefficient. This point
might be moot if the correct weights are unknown, but the GLS standard errors will
also be incorrect. The asymptotic covariance matrix of the estimator

B =XV IX]"'X'Vly 11-15)
is
Asy. Var[8] = o2 [X' VX' X'V IQVIX[X'VIX] . (11-16)

This result may or may not resemble the usual estimator, which would be the matrix in
brackets, and underscores the usefulness of the White estimator in (11-9).

The standard approach in the literature is to use OLS with the White estimator
or some variant for the asymptotic covariance matrix. One could argue both flaws and
virtues in this approach. In its favor, robustness to unknown heteroscedasticity is a
compelling virtue. In the clear presence of heteroscedasticity, however, least squares
can be extremely inefficient. The question becomes whether using the wrong weights is
better than using no weights at all. There are several layers to the question. If we use
one of the models discussed earlier— Harvey’s, for example, is a versatile and flexible
candidate —then we may use the wrong set of weights and, in addition, estimation of
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the variance parameters introduces a new source of variation into the slope estimators
for the model. A heteroscedasticity robust estimator for weighted least squares can
be formed by combining (11-16) with the White estimator. The weighted least squares
estimator in (11-15) is consistent with any set of weights V =diag[v;, vs, ..., v,]. Its
asymptotic covariance matrix can be estimated with —

n 2
Est.Asy. Var[f] = (X'V~'X)"! [E (e—z) xx, | (X'V7IX)~ L, (11-17)
v .

i

i=1

Any consistent estimator can be used to form the residuals. The weighted least squares
estimator is a natural candidate.

.6 ESTIMATION WHEN € CONTAINS UNKNOWN

PARAMETERS

The general form of the heteroscedastic regression model has too many parameters to
estimate by ordinary methods. Typically, the model is restricted by formulating o282 as
a function of a few parameters, as in 6 = o%x¥ or 67 = o?[x/a]?. Write this as 2(a).
FGLS based on a consistent estimator of Q(«) (meaning a consistent estimator of o)
is asymptotically equivalent to full GLS, and FGLS based on a maximum likelihood
estimator of Q(a) will produce a maximum likelihood estimator of B8 if Q(«) does
not contain any elements of B. The new problem is that we must first find consistent
estimators of the unknown parameters in (). Two methods are typically used, two-

step GLS and maximum likelihood.

11.6.1 TWO-STEP ESTIMATION

For the heteroscedastic model, the GLS estimator is

-1
~ n 1 n 1
B= [Z <'07)Xixf} [Z (;)Xz’}’z} . (11-18)
i=1 ! i=1 l

The two-step estimators are computed by first obtaining estimates 67, usually using
some function of the ordinary least squares residuals. Then. 8 uses (11-18) and G2.
The ordinary least squares estimator of 8, although inefficient, is still consistent. As
such, statistics computed using the ordinary least squares residuals, e; = (yi —x(b), will
have the same asymptotic properties as those computed using the true disturbances,
& = (y; —x;B). This result suggests a regression approach for the true disturbances and
variables z; that may or may not coincide with x;. Now E[¢7 |z;] = o, s0

2 2
& =0 + v,

where v; is just the difference between &7 and its conditional expectation. Since ¢; is
unobservable, we would use the least squares residual, for which ¢; = ; — x(b-p)=

. p . .
& + u;. Then, e,-2 = 81-2 —+ ui2 + 2¢;u;. But, in large samples, as b— B, terms in u; will
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become negligible, so that at least approximately,'>

e,-2 = aiz + v},

The procedure suggested is to treat the variance function as a regression and use the
squares or some other functions of the least squares residuals as the dependent vari-
able.'® For example, if 0 = z}a, then a consistent estimator of a will be the least squares
slopes, a, in the * model ”

2 __ o *
€; _zia+v,~.

In this model, v/ is both heteroscedastic and autocorrelated, so a is consistent but
inefficient. But, consistency is all that is required for asymptotically efficient estimation
of B using R(é&). It remains to be settled whether improving the estimator of « in this
and the other models we will consider would improve the small sample properties of
the two-step estimator of 8.1

The two-step estimator may be iterated by recomputing the residuals after comput-
ing the FGLS estimates and then reentering the computation. The asymptotic properties
of the iterated estimator are the same as those of the two-step estimator, however. In
some cases, this sort of iteration will produce the maximum likelihood estimator at
convergence. Yet none of the estimators based on regression of squared residuals on
other variables satisfy the requirement. Thus, iteration in this context provides little
additional benefit, if any.

11.6.2 MAXIMUM LIKELIHOOD ESTIMATION®

The log-likelihood function for a sample of normally distributed observations is

1 < 1
InL= —g InQ27) — 3 Z [lnaiz + a_iz()’i - x}B)’

i=1

For simplicity, let (11-19)

Giz = ozﬁ(a)v

where « is the vector of unknown parameters in (e) and f;(a) is indexed by i to
indicate that it is a function of z; —note that () = diag[ f; ()] so it is also. Assume as
well that no elements of g appear in &. The log-likelihood function is

n 1 - 1

i=1

For convenience in what follows, substitute ¢; for (y; — x/f8), denote f;(«) as simply
fi, and denote the vector of derivatives df;(«)/0a as g;. Then, the derivatives of the

@Amemiya (1985) for formal analysis.

168ee, for example, Jobson and Fuller (1980).

TFomby, Hill, and Johnson (1984, pp. 177-186) and Amemiya (1985, pp. 203-207; 1977a) examine this model.
18The method of maximum likelihood estimation is developed in Chapter 17.



CHAPTER 11 4 Heteroscedasticity 229 .

log-likelihood function are
dln L zn: Ej
= Xi —_—
op Py o?f;

dln L
302 204 Z Z (202)<_ - 1> (11-20)

321L=§;<%)(%—1><%)&~

Since El[¢;|x;,2z;] = 0 and E[e? |x;,2] = o2 f, it is clear that all derivatives have
expectation zero as required. The maximum likelihood estimators are those values
of B,0?, and « that simultaneously equate these derivatives to zero. The likelihood
equations are generally highly nonlinear and will usually require an iterative solution.

Let G be the n x M matrix with ith row equal to 3f;/da’ = g/ and let i denote an
n x 1 column vector of 1s. The asymptotic covariance matrix for the maximum likelihood
estimator in this model is

, - [(/edxeIX 0 0 '
0-In L ]
—-E = (14 n/Qo*) /)i G| |
ayay’
(14 1/QeH)HG'R7 N (1/2G'272G
(11-21)

where y’ = [’, 02, a’]. (One convenience is that terms involving 82 f; /dade’ fall out of
the expectations. The proof is considered in the exercises.)

From the likelihood equations, it is apparent that for a given value of «, the solution
for B is the GLS estimator. The scale parameter, o2, is ultimately irrelevant to this
solution. The second likelihood equation shows that for given Values of B and &, o2 will
be estimated as the mean of the squared generalized residuals, 62 = (1 /3 —

x'8)/ f,]2. This term is the generalized sum of squares. Finally, there is no general
solutlon to be found for the estimator of a; it depends on the model. We will examine
two examples. If o is only a single parameter, then it may be simplest just to scan a range
of values of & to locate the one that, with the associated FGLS estimator of 8, maximizes
the log-likelihood. The fact that the Hessian is block diagonal does provide an additional
convenience. The parameter vector 8 may always be estimated conditionally on [02, «]
and, likewise, if B is given, then the solutions for o2 and & can be found conditionally,
although this may be a complicated optimization problem. But, by going back and
forth in this fashion, as suggested by Oberhofer and Kmenta (1974), we may be able
to obtain the full solution more easily than by approaching the full set of equations
simultaneously.

11.6.3 MODEL BASED TESTS FOR HETEROSCEDASTICITY

The tests for heteroscedasticity described in Section 11.4 are based on the behavior
of the least squares residuals. The general approach is based on the idea that if het-
eroscedasticity of any form is present in the disturbances, it will be discernible in the
behavior of the residuals. Those residual based tests are robust in the sense that they
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will detect heteroscedasticity of a variety of forms. On the other hand, their power is
a function of the specific alternative. The model considered here is fairly narrow. The
tradeoff is that within the context of the specified model, a test of heteroscedasticity will
have greater power than the residual based tests. (To come full circle, of course, that
means that if the model specification is incorrect, the tests are likely to have limited or
no power at all to reveal an incorrect hypothesis of homoscedasticity.)

Testing the hypothesis of homoscedasticity using any of the three standard meth-
ods is particularly simple in the model outlined in this section. The trio of tests for
parametric models is available. The model would generally be formulated so that the
heteroscedasticity is induced by a nonzero «. Thus, we take the test of Hy : @ = 0 to be
a test against homoscedasticity.

Wald Test The Wald statistic is computed by extracting from the full parameter vector
and its estimated asymptotic covariance matrix the subvector & and its asymptotic
covariance matrix. Then,

