المحور الرابع: مقاييس النزعة المركزية

The fourth axis: Measures of Central Tendancy

محتوى المحاضرة السابعة

ثالثا: الوسيط Median

- ا- الوسيط في حالة بيانات غير مبوبة
- اا- الوسيط في حالة بيانات مبوبة في جدول تكراري
 - 1- بيانات كمية متقطعة
 - 2- بيانات كمية مستمرة
- III- شبهات الوسيط: الربيعيات، العشيريات، الميئيات

ثالثا: الوسيط (Median):

يعرف الوسيط بأنه القيمة التي تقسم البيانات المرتبة تصاعديا أو تنازليا إلى قسمين متساويين، حيث يكون عدد القيم الأكبر منه مساويا لعدد القيم الأصغر منه، و يرمز له بالرمز Me. ويحسب كما يلى:

ا- <u>الوسيط في حالة بيانات غير مبوية:</u>

لعرفة قيمة الوسيط لبيانات أولية (غير مبوبة) نقوم أولا بترتيها تصاعديا أو تنازليا، ثم نحدد رتبة الوسيط والتي تساوي $(\frac{N+1}{2})$.

<u>مثال1:</u>

تمثل السلسلتين التاليتين أحسب وسيط كل سلسلة من السلسلتين التاليتين:

6, 9, 5, 7, 5, 6, 8

7,6,9,5,7,5,6,8

<u>الحل:</u>

- بالنسبة للسلسلة الأولى نرتب القيم تصاعديا:

 $(\frac{N+1}{2})$ اذا فإن قيمة الوسيط هي القيمة التي رتبتها ال(n=7) نلاحظ أن عدد القيم فردي ((n=7))، إذا فإن قيمة الوسيط القيمة التي رتبتها

$$M_e = X_{\frac{n+1}{2}} = X_{\frac{7+1}{2}} = X_4 = 6$$
 i.

✓ بالنسبة للسلسلة الثانية نرتب القيم تصاعديا:

$$M_e$$
= 6.5 M_e = 6.

 $\frac{N}{2}$ نلاحظ أن عدد القيم زوجي (n=8)، إذا فإن قيمة الوسيط هي متوسط القيمتين اللتين رتبتهما $(\frac{N}{2})$ و $(\frac{N}{2})$

$$M_{e} = X_{\frac{n+1}{2}} = X_{\frac{8+1}{2}} = X_{4,5}$$

$$M_{e} = \frac{X_{4} + X_{5}}{2} = \frac{6+7}{2} = 6.5 \quad :c$$

$$M_{e} = \frac{X_{\frac{n}{2}} + X_{\frac{n}{2}+1}}{2} = \frac{X_{\frac{8}{2}} + X_{\frac{8}{2}+1}}{2} = \frac{X_{4} + X_{5}}{2} = \frac{6+7}{2} = 6.5 \quad :d$$

$$\tilde{I}_{e} = \frac{X_{\frac{n}{2}} + X_{\frac{n}{2}+1}}{2} = \frac{X_{\frac{n}{2}} + X_{\frac{n}{2}+1}}{2} = \frac{X_{\frac{n}{2}} + X_{\frac{n}{2}+1}}{2} = 6.5 \quad :d$$

ملاحظة:

إذا كان فرديا فإن الوسيط هو القيمة التي رتبتها $(\frac{N+1}{2})$ ، وإذا كان زوجيا فإن الوسيط هو متوسط القيمتين إذا كان $(\frac{N}{2}+1)$ فإن الوسيط هو متوسط القيمتين اللتين رتبتهما $(\frac{N}{2}+1)$ و $(\frac{N}{2}+1)$ و $(\frac{N}{2}+1)$

II- الوسيط في حالة بيانات مبوبة في جدول تكراري:

1- في حالة بيانات كمية متقطعة:

لحساب الوسيط من جدول تكراري لمتغير كمي متقطع نتبع الخطوات التالية:

ightharpoonupتشكيل عمود التكرار المتجمع الصاعد $(cf_i \uparrow)$.

$$\frac{N}{2}$$
 تحدید رتبة الوسیط بقسمة مجموع التکرارات علی اثنین $\frac{N}{2}$.

البحث في عمود التكرار المتجمع الصاعد $(\mathrm{cf}_i \uparrow)$ عن القيمة التي تساوي رتبة الوسيط $(\frac{N}{2})$ أو الأكبر منها مباشرة.

فيمة الوسيط هي \mathbf{x}_i التي تقابل رتبة الوسيط $\left(\frac{N}{2}\right)$ أو الاكبر منها مباشرة.

<u>مثال2:</u>

يمثل الجدول التالي توزيع مجموعة من الأسر حسب عدد الاطفال:

(عدد الأطفال)	2	3	4	5	Σ
(عدد الأسر)	7	4	6	3	20

أوجد قيمة الوسيط حسابيا وبيانيا؟

 $cf_i \uparrow$

12

16

22

25

 f_i

(عدد الاسر)

4

6

3

25

X_i (عدد الأطفال)

4

5

Σ

 $M_e = 3$

<u>الحل:</u>

✓ ايجاد قيمة الوسيط حسابيا:

$(cf_i\uparrow)$ الصاعد	التكرار المتجمع	۱ تشکیل عمود ا	/
-------------------------	-----------------	----------------	---

$$\frac{N}{2} = \frac{25}{2}$$
 =12.5 الوسيط: \checkmark

القيمة 2.5 عن القيمة 12.5 ightharpoonup
ightha

 $\frac{N}{2}$ قيمة الوسيط هي X_i التي تقابل رتبة الوسيط $\frac{N}{2}$ أو الأكبر منها مباشرة(16)، إذا: $M_e=3$

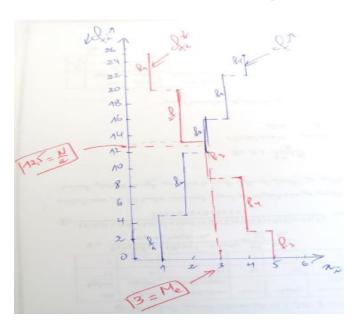
التفسير:

50 % من الاسر عدد أطفالها أقل من 3 و 50 % من الاسر عدد أطفالها أكبر من 3.

√ ايجاد قيمة الوسيط بيانيا:

يتم إيجاد قيمة الوسيط بيانيا كما يلى:

✓ رسم منحني التكرار المتجمع الصاعد أو النازل


 $\frac{N}{2}$ تحديد رتبة الوسيط $\frac{N}{2}$ على المحور العمودي الذي يعبر عن التكرارات المتجمعة الصاعدة أو النازلة.

✔ اسقاط هذه النقطة على منحني التكرار المتجمع الصاعد أو النازل افقيا،

المحور الأفقي الذي يعبر عن المتغير X_i يعطينا قيمة X_i يعطينا قيمة الوسيط M_e .

التمثيل البياني:

X _i	f _i	cf _i ↑	$\operatorname{cf}_i \searrow$
(عدد الأطفال)	(عدد الأسر)		
1	5	5	25
2	7	12	20
3	4	16	13
4	6	22	9
5	3	25	3
Σ	25	/	/

2- في حالة بيانات كمية مستمرة:

لحساب الوسيط من جدول تكراري لمتغير كمي مستمر نتبع الخطوات التالية:

 \checkmark تشكيل عمود التكرار المتجمع الصاعد (cf_i).

$$\frac{N}{2}$$
). $\frac{N}{2}$ تحدید رتبة الوسیط بقسمة مجموع التکرارات علی اثنین $\frac{N}{2}$).

البحث في عمود التكرار المتجمع الصاعد
$$(cf_i\uparrow)$$
 عن القيمة التي تساوي رتبة الوسيط $(\frac{N}{2})$ أو الاكبر منها مباشرة.

$$\checkmark$$
 تحديد فئة الوسيط أي الفئة التي يقع فها الوسيط، و هي الفئة التي تقابل التكرار المتجمع الصاعد الذي يساوي رتبة الوسيط $(\frac{N}{2})$ أو الأكبر مها مباشرة.

✓ حساب قيمة الوسيط بالعلاقة التالية:

$$M_e = LC_{M_e} + \left(\frac{\frac{N}{2} - cf_{(M_e - 1)}\uparrow}{f_{M_e}}\right) L_{M_e}$$

حيث:

الحد الأدني للفئة الوسيطية LC_{M_e}

التكرار المتجمع الصاعد للفئة ما قبل الفئة الوسيطية: $cf_{(M_e-1)}$

التكرار المطلق للفئة الوسيطية: f_{M_e}

طول الفئة الوسيطية \mathbf{L}_{Me}

<u>مثال3:</u>

يمثل التوزيع التالي عدد الساعات الإضافية لمجموعة من العمال خلال شهر:

X_i	f_i	cf _i ↑
(الساعات الاضافية)	(عدد العمال)	
[2 4[4	4
[4 6[8	12
[6 8[10	22
[8 10[16	38
[10 12]	12	50
Σ	50	/

✓ حساب قيمة الوسيط و تفسيره:

 \checkmark تشكيل عمود التكرار المتجمع الصاعد (cf_i \uparrow).

$$\frac{N}{2} = \frac{50}{2} = 25$$
 تحدید رتبة الوسیط: 🗸

نبحث في عمود التكرار المتجمع الصاعد $(\mathrm{cf}_i \uparrow)$ عن القيمة 25. غير موجودة إذا نأخذ القيمة الأكبر منها مباشرة وهي 38.

✔ تحديد الفئة التي يقع فيها الوسيط، و هي الفئة التي تقابل التكرار المتجمع الصاعد (38). وهي:] 10 8]

$$ext{M}_e$$
= $ext{LC}_{M_e}$ + $\left(rac{rac{N}{2}-cf_{(M_e-1)}{}^{\uparrow}}{f_{M_e}}
ight)$ $ext{L}_{M_e}$: حساب قيمة الوسيط بالعلاقة التالية

الحد الأدنى للفئة الوسيطية \mathbf{LC}_{M_p}

 \sim 22 \leftarrow يمثل التكرار المتجمع الصاعد للفئة ما قبل الفئة الوسيطية : $cf_{(M_e-1)}$

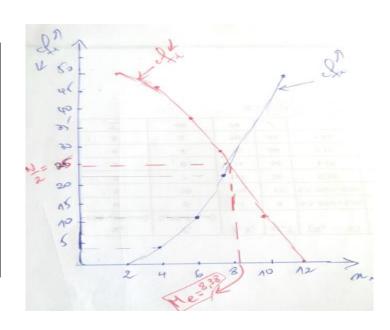
 $16 \leftarrow$ يمثل التكرار المطلق للفئة الوسيطية: f_{M_e}

طول الفئة الوسيطية $\rightarrow 2$

$$M_e = LC_{M_e} + \left(\frac{\frac{N}{2} - cf_{(M_e - 1)}\uparrow}{f_{M_e}}\right) L_{M_e} \Rightarrow Me = 8 + \left(\frac{25 - 22}{16}\right) 2 \Rightarrow Me = 8.38h$$

<u>التفسير:</u>

50 % من العمال عدد ساعاتهم الإضافية أقل من 8.38 ساعة و 50 % من العمال عدد ساعاتهم الإضافية أكبر من أو يساوي 8.38 ساعة.


√ ايجاد قيمة الوسيط بيانيا:

يتم إيجاد قيمة الوسيط بيانيا كما يلي:

- ✓ رسم منحني التكرار المتجمع الصاعد أو النازل
- \sqrt{N} تحديد رتبة الوسيط $\frac{N}{2}$ على المحور العمودي الذي يعبر عن التكرارات المتجمعة الصاعدة أو النازلة.
 - ✔ اسقاط هذه النقطة على منحني التكرار المتجمع الصاعد أو النازل افقيا،
- ✓ ونقطة التقاطع المتحصل عليها يتم اسقاطها عموديا على المحور الأفقي الذي يعبر عن المتغير X_i يعطينا قيمة الوسيط M_e .

التمثيل البياني:

	X_i	f _i	cf _i ↑	cf _i ∨
اعات	(السا	(عدد		
فية)	الاضا	الاسر)		
[2	4[4	4	50
[4	6[8	12	46
[6	8[10	22	38
[8	10[16	38	28
[10	12]	12	50	12
2	Σ	50	/	/

المحور الرابع: مقاييس النزعة المركزية......المحور الرابع: مقاييس النزعة المركزية....

III- <u>شبهات الوسيط: الربيعيات، العشيريات، الميئيات</u>

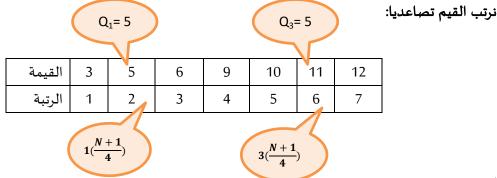
شبهات الوسيط هي قيم تقسم مجموع بيانات أي ظاهرة إلى عدة أقسام متساوية ويتم التعامل مع هذه القيم بنفس طريقة التعامل مع الوسيط، وأشباه الوسيط هي: الربيعيات والعشيريات والمئييات.

1- الربيعيات(Quartiles):

هي القيم التي تقسم البيانات إلى أربع أجزاء متساوية، ويرمز له بالرمز: Qi، ويعرف الربيع(i) حيث: (i = 1,2,3) على أنه القيمة أو المفردة التي يسبقها (25 % × i) من البيانات المرتبة تصاعديا.

أ- الربيعيات في حالة بيانات غير مبوبة:

لعرفة قيمة الربيعي لبيانات أولية (غير مبوبة) نقوم أولا بترتيها تصاعديا أو تنازليا، ثم نحدد رتبة الربيعي (i) والتي تساوي $(\frac{N+1}{4})$ i.


المقابلة لهذه الرتبة X إذا كان: $\frac{N+1}{4}$ دون فواصل نأخذ قيمة X

القيمتين الخذ متوسط القيمتين $\frac{N+1}{4}$ مع فواصل نأخذ متوسط القيمتين

مثال1:

أوجد الربيعي الاول والثالث للسلسلة التالية: 12،09 ، 03،11، 05 ، 10،06،

<u>الحل:</u>

√ حساب الربيعي الأول:

$$Q_{1=}$$
 $X_{rac{n+1}{4}}$ = $X_2=5$ رتبة الربيعي الأول هي: $X_{rac{n+1}{4}}=X_2=5$ ، إذا قيمة الربيعي الأول هي: $X_{rac{n+1}{4}}=X_2=5$

التفسير:

25% من البيانات أقل من 5، و75 % من البيانات أكبر من 5.

√ حساب الربيعي الثالث:

$$Q_{3}=X_{3(rac{n+1}{4})}=X_{6}=11$$
 وتبة الربيعي الثالث هي: $3(rac{n+1}{4})=3(rac{7+1}{4})=3$ ، إذا قيمة الربيعي الثالث هي: التفسير:

75% من البيانات أقل من 11، و25 % من البيانات أكبر من 11.

<u>ملاحظة:</u>

 $oldsymbol{Q}_2 = oldsymbol{\mathsf{M}}_e$ قيمة الربيعي الثاني هي نفس قيمة الربيعي الثاني الثان

ب- الربيعيات في حالة بيانات مبوبة كمية متقطعة:

لحساب الربيعيات من جدول تكراري لمتغير كمي متقطع نتبع الخطوات التالية:

 \checkmark تشكيل عمود التكرار المتجمع الصاعد $(cf_i\uparrow)$.

 $i(\frac{N}{4})$:وهي (i) وهي الربيعي \checkmark

البحث في عمود التكرار المتجمع الصاعد $(cf_i\uparrow)$ عن القيمة التي تساوي رتبة الربيعي(i) أو الأكبر منها مباشرة.

قيمة الربيعي هي قيمة x_i التي تقابل رتبة الربيعي أو الأكبر منها مباشرة.

<u>مثال2:</u>

يمثل الجدول التالي توزيع مجموعة من الأسر حسب عدد الاطفال:

(عدد الأطفال)	2	3	4	5	Σ
(عدد الأسر)	7	4	6	3	20

أوجد قيمة الربيعي الأول والثاني؟

<u>الحل:</u>

√ ايجاد قيمة الربيعي الأول:

 \checkmark تشكيل عمود التكرار المتجمع الصاعد (cf_i).

$$irac{N}{4}=1.rac{25}{4}$$
 =6.25 خديد رتبة الربيعي الأول:

6.25 عن القيمة (cf_i) عن القيمة كن نبحث في عمود التكرار المتجمع الصاعد \star غير موجودة إذا نأخذ القيمة الأكبر منها مباشرة وهي 12.

 $\mathbf{Q_1}$ = 2 :اذا: 12 التي تقابل القيمة 12، إذا \mathbf{X}_i

التفسير:

25% من الأسر عدد أطفالها أقل من 2 و 75% من الأسر عدد أطفالها أكبر من 2.

√ ايجاد قيمة الربيعي الثالث:

- $irac{N}{4}=3.rac{25}{4}$ =18.75 الثالث: تحديد رتبة الربيعي الثالث:
- نبحث في عمود التكرار المتجمع الصاعد $(cf_i\uparrow)$ عن القيمة 18.75، غير موجودة إذا نأخذ القيمة الأكبر منها مباشرة وهي 22.
 - \mathbf{Q}_3 = 4 التي تقابل القيمة 22، إذا: \mathbf{x}_i قيمة الربيعي الثالث هي

<u>التفسير:</u>

75% من الأسر عدد أطفالها أقل من 4 و 25% من الأسر عدد أطفالها أكبر من 4.

 \mathbf{X}_{i}

(عدد الأطفال)

 \mathbf{f}_{i}

(عدد الاسر)

 $cf_i \uparrow$

ج- الربيعيات في حالة بيانات مبوبة كمية مستمرة:

لحساب الربيعيات من جدول تكراري لمتغير كمي مستمر نتبع الخطوات التالية:

ر (cf_i). دشكيل عمود التكرار المتجمع الصاعد $(cf_i$).

$$i(\frac{N}{4})$$
 :وهي (i) وهي الربيعي \checkmark

البحث في عمود التكرار المتجمع الصاعد $(cf_i\uparrow)$ عن القيمة التي تساوي رتبة الربيعي(i) أو الأكبر منها مباشرة.

✓ تحديد الفئة التي يقع فها الربيعي(i)، و هي الفئة التي تقابل التكرار المتجمع الصاعد الذي يساوي رتبة الربيعي(i)
 أو الأكبر منها مباشرة.

✓ حساب قيمة الربيعي(i) بالعلاقة التالية:

$$Q_{i} = LC_{Q_{i}} + \left(\frac{i(\frac{N}{4}) - cf_{(Q_{i}-1)}\uparrow}{f_{Q_{i}}}\right)L_{Q_{i}}$$

حيث:

الحد الأدني للفئة الوسيطية LC_{Q_i}

التكرار المتجمع الصاعد للفئة ما قبل الفئة الوسيطية : $cf_{(Q_i-1)}$

التكرار المطلق للفئة الوسيطية: f_{Q_i}

طول الفئة الوسيطية: \mathbf{L}_{Q_i}

<u>مثال3:</u>

يمثل التوزيع التالي عدد الساعات الإضافية لمجموعة من العمال خلال شهر:

	X_i (الساعات الاضافية)	f_i (عدد العمال)	cf _i ↑
		(عدد العمال)	
الفئة الربيعية 1	[2 4[4	4
	[4 6[8	12
الفئة الربيعية3	[6 8[10	22
	[8 10[16	38
	[10 12]	12	50
	Σ	50	

أحسب قيمة الربيعي الأول والثاني؟

<u>الحل:</u>

✓ حساب قيمة الربيعي الأول و تفسيره:

- . $(cf_i\uparrow)$ عمود التكرار المتجمع الصاعد
- $irac{N}{4}={f 1}.rac{50}{4}$ =12.5 كأول: الربيعي الأول: تحديد رتبة الربيعي
- نبحث في عمود التكرار المتجمع الصاعد $(cf_i\uparrow)$ عن هذه القيمة 12.5، غير موجودة إذا نأخذ القيمة الأكبر منها مباشرة وهي 22.

المحور الرابع: مقاييس النزعة المركزبة......المحور الرابع: مقاييس النزعة المركزبة....

- تحديد الفئة التي يقع فيها الربيعي الأول، و هي الفئة التي تقابل التكرار المتجمع الصاعد (22). وهي:]8 6]

حيث:

الحد الأدني للفئة الربيعية الأولى LC_{Q_1} : الحد

التكرار المتجمع الصاعد للفئة ما قبل الفئة الربيعية الأولى $cf_{(Q_1-1)}$

التكرار المطلق للفئة الربيعية الأولى f_{0_1}

 L_{Q_1} : طول الفئة الربيعية الأولى 2

$$Q_1 = LC_{Q_1} + \left(\frac{1(\frac{N}{4}) - cf_{(Q_1 - 1)}^{\uparrow}}{f_{Q_1}}\right)L_{Q_1} \Rightarrow Q_1 = 6 + \left(\frac{12.5 - 12}{10}\right) 2 \Rightarrow Q_1 = 6.1h$$

التفسير:

25 % من العمال عدد ساعاتهم الإضافية أقل من 6.1 ساعة و 75 % من العمال عدد ساعاتهم الإضافية أكبر من أو يساوي 6.1 ساعة.

✓ حساب قيمة الربيعي الثالث و تفسيره:

- $irac{N}{4}=3.rac{50}{4}$ =37.5 الثالث: تحديد رتبة الربيعي الثالث:
- نبحث في عمود التكرار المتجمع الصاعد $(cf_i\uparrow)$ عن هذه القيمة 37.5، غير موجودة إذا نأخذ القيمة الأكبر منها مباشرة وهي 38.
 - تحديد الفئة التي يقع فيها الربيعي الثالث، وهي الفئة التي تقابل التكرار المتجمع الصاعد (38). وهي: [10 8]

حيث:

الحد الأدني للفئة الربيعية الثالثة لل $\mathbf{LC_{Q_3}}$

 \sim 122 كالتكرار المتجمع الصاعد للفئة ما قبل الفئة الربيعية الثالثة: $cf_{(Q_3-1)}$

التكرار المطلق للفئة الربيعية الثالثة tq_3

طول الفئة الربيعية الثالثة ightarrow 2

$$Q_3 = LC_{Q_3} + \left(\frac{3(\frac{N}{4}) - cf_{(Q_3 - 1)}^{\uparrow}}{f_{Q_3}}\right)L_{Q_3} \Rightarrow Q_3 = 8 + \left(\frac{37.5 - 22}{16}\right) 2 \Rightarrow Q_3 = 9.93h$$

<u>التفسير:</u>

75 % من العمال عدد ساعاتهم الإضافية أقل من 9.93 ساعة و 25 % من العمال عدد ساعاتهم الإضافية أكبر من أو يساوى 9.93 ساعة.

المحور الرابع: مقاييس النزعة المركزية.......المحور الرابع: مقاييس النزعة المركزية....

2- العشيريات(Deciles):

هي القيم التي تقسم البيانات إلى عشرة أجزاء متساوية، ويرمز لها بالرمز: Di، ويعرف العشيري(i) حيث: (i=1,2,3.....9) على أنه القيمة أو المفردة التي يسبقها (i=1,2,3.....19) من البيانات المرتبة تصاعديا.

3- الميئيات(Percentiles):

هي القيم التي تقسم البيانات إلى مئة جزء متساوي، ويرمز لها بالرمز:Pi، ويعرف الميين(i) حيث: (99,, 99,) على أنه القيمة أو المفردة التي يسبقها (10 % × i) من البيانات المرتبة تصاعديا.