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> Exercise n°1

1.Matrix representation of T :

To find the matrix A of T, we apply T to the standard basis vectors of :

Thus, the matrix representation of T is:

2.Eigenvalues of T :

The eigenvalues are found by solving the characteristic equation:

where I is the identity matrix.

The determinant is:

Expanding along the first row:

The eigenvalues are:

REMARK : since the matrix A is triangular matrix so we can directly deduce that .

3.Eigenvectors

For :

Solve :



Exercises solution

6

The system reduces to:

An eigenvector for is:

For :

Solve :

This reduces to:

Two linearly independent eigenvectors for are:

4. Image of

The image is:

> Exercise n°2

1.Covariance Matrix:

The covariancematrix is a symmetric matrix that shows the variances along the diagonal and the covariances in
the off-diagonal elements. From the given data:
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2. Finding the Eigenvalues

The characteristic polynomial is given by:

The matrix is:

The determinant of this matrix is:

;

Simplifying further:

Thus, we have two factors to solve for eigenvalues:

3. Solving the quadratic equation :

Step 2: Eigenvalues, Percentages, and Cumulative Percentages

Now, let's organize the eigenvalues and their corresponding percentages of variance:

.

4. Percentage of Variance Explained by Each Principal Component :
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First principal component:

Second principal component:

Third principal component:

5. Kaiser Criterion:

According to the Kaiser criterion, all three principal components should be retained because all eigenvalues are
greater than 1.

6. Eigenvalue Equation

The system of equations becomes:

The solution to the system is:

7. Normalize the eigenvector

> Exercise n°3:

1. The Centered Matrix M:

We know that: and
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Thus, for the equation:

By solving the system of equations, we get:

Substituting equation (1) into equation (2), we get:

By substituting into equation (1), we find:

We are given the matrix:

2. The Basic Data Matrix:

We know that:
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Therefore:

3. Variance-Covariance Matrix:

4. Total Variance:

5. Remaining Eigenvalue:

We have:

From this, we can deduce the remaining eigenvalue as follows:
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