Chapter | : Recursivity

Introduction

Recursion is a fundamental concept in computer science where a function calls
itself to break down a problem into smaller subproblems. This approach is
particularly useful in problems that exhibit self-similarity and can be broken

down into simpler versions of the same problem.

Recursivity Algorithm

A recursive algorithm is an algorithm that invokes itself during execution with a
reduced version of itself, as it proceeds by reducing a problem to the same
problem with smaller input. A recursive algorithm consists of the base case and

the general case.

1. Basic Concept of Recursion

A recursive function consists of:

1. Base case: A condition that stops the recursion.
2. Recursive case: A rule that breaks the problem into smaller instances.

For example, the factorial function is defined as:

n!=nx(n-1)In! = n \times (n-1)!n!=nx(n-1)!



with the base case:

0!=10!=10!=1

Implementation in Python

python

def factorial(n):
if n ==
return 1 # Base case

return n * factorial(n - 1) # Recursive call

print(factorial(5)) # Output: 126

Example -2-

For example, consider this problem statement: Print sum of n natural numbers
using recursion. This statement clarifies that we need to formulate a function
that will calculate the summation of all natural numbers in the range 1 to n.
Hence, mathematically you can represent the function as:

Fi(nN)=1+2+3+4+ ... +(n-2)+(n-1) +n

It can further be simplified as:

r=n

Fm)= 3 ()

You can breakdown this function into two parts as follows:



Breakdown of Problem Statement

k=n

Fn) = > (k)
k=0

I
v v

Base Case Recursive step
If(n == 0) F(n) = n + F(n-1)
{
Return;

} o




	1. Basic Concept of Recursion
	Example -2-

	Chapter I : Recursivity

