Tutorial N°1

Exercice 01

1) Define the process of recurcivity in algorithmcs.
The process in which a function calls itself directly or indirectly is called
recursion and the corresponding function is called a recursive function.
« A rrecursive algorithm takes one step toward solution and then
recursively call itself to further move. The algorithm stops once we
reach the solution.
« Since called function may further call itself, this process might
continue forever. So, it is essential to provide a base case to
terminate this recursion process.

2) Why is recursion needed in algorithmics?

Solution 01

1. Define the process of recurcivity in algorithmcs.

The process in which a function calls itself directly or indirectly is called

recursion and the corresponding function is called a recursive function.

« A recursive algorithm takes one step toward solution and then
recursively call itself to further move. The algorithm stops once we
reach the solution.

« Since called function may further call itself, this process might
continue forever. So it is essential to provide a base case to
terminate this recursion process.

2. Need of Recursivity
« Recursivity helps in logic building. Recursive thinking helps in solving

complex problems by breaking them into smaller subproblems.



« Recursive solutions work as a a basis for Dynamic Programming and
Divide and Conquer algorithms.
« Certain problems can be solved quite easily using recursion like:
a) Towers of Hanoi (TOH),
b) Inorder/Preorder/Postorder Tree Traversals,
c) DES of Graph, etc.

Exercice 03

a) We ask you writing an algorithm that calculate a Fibonacci sequence.
b) Translate the written algorithm in C language.

Explanation:

Each number in the Fibonacci sequence is the sum of the two preceding numbers:
F(n) = F(n-1) + F(n-2) With base casesr(0) = oand r(1) = 1.

Solution

(n):ifn<=0:returnOelseifn==1:returnla=0b=1forifrom2ton:c=a+ba=bb=creturnb

Algorithm Fibonacci;
Var n :integer;

Begin

A S

Read (n);

¥ 6; { Exemple : calcul du 6éme nombre de Fibonacci }
riteln('Fibonacci(', n, ') =", Fibonacci(n)); readIn; end.
=0:returnOelseifn==1:returnla=0b=1fori
om2ton:c=a+ba=bb=creturnb



https://www.geeksforgeeks.org/c-program-for-tower-of-hanoi/
https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/

Recursive Fibonacci in C
c & Copier ¥ Modifier

#include <stdio.h>»

// Recursive function to calculate Fibonacci
int fibonacci{int n) {

if (n <= @) return 8;

if (n == 1) return 1;

return fibonacci(n - 1) + fibonacci(n - 2);

int main() {
int n = 6; // Example: Find the 6th Fibonacci number
printf(“Fibonacci(®d) = ¥d\n", n, fibonacci(n});

return &;

A recursive algorithm is an algorithm that invokes itself during execution with a

#include <stdio.h>

// Recursive function to find the sum of
/7 numbers from @ to n
int findSum{int n)
{
// Base case
if (n == @)
return @;

/7 Recursive case
return n + findSum(n - 1);







	Tutorial N 1

