

Exercice 01

1) Define the process of recurcivity in algorithmcs.

The process in which a function calls itself directly or indirectly is called

recursion and the corresponding function is called a recursive function.

 A recursive algorithm takes one step toward solution and then

recursively call itself to further move. The algorithm stops once we

reach the solution.

 Since called function may further call itself, this process might

continue forever. So, it is essential to provide a base case to

terminate this recursion process.

2) Why is recursion needed in algorithmics?

Solution 01

1. Define the process of recurcivity in algorithmcs.

The process in which a function calls itself directly or indirectly is called

recursion and the corresponding function is called a recursive function.

 A recursive algorithm takes one step toward solution and then

recursively call itself to further move. The algorithm stops once we

reach the solution.

 Since called function may further call itself, this process might

continue forever. So it is essential to provide a base case to

terminate this recursion process.

2. Need of Recursivity

 Recursivity helps in logic building. Recursive thinking helps in solving

complex problems by breaking them into smaller subproblems.

Tutorial N°1

 Recursive solutions work as a a basis for Dynamic Programming and

Divide and Conquer algorithms.

 Certain problems can be solved quite easily using recursion like:

a) Towers of Hanoi (TOH),

b) Inorder/Preorder/Postorder Tree Traversals,

c) DFS of Graph, etc.

Exercice 03

a) We ask you writing an algorithm that calculate a Fibonacci sequence.

b) Translate the written algorithm in C language.

Explanation:

Each number in the Fibonacci sequence is the sum of the two preceding numbers:

F(n) = F(n-1) + F(n-2) with base cases F(0) = 0 and F(1) = 1.

Solution

(n): if n <= 0: return 0 else if n == 1: return 1 a = 0 b = 1 for i from 2 to n: c = a + b a = b b = c return b

Algorithm Fibonacci;

Var n : integer;

Begin

 Read (n) ;

:= 6; { Exemple : calcul du 6ème nombre de Fibonacci }

writeln('Fibonacci(', n, ') = ', Fibonacci(n)); readln; end.

<= 0: return 0 else if n == 1: return 1 a = 0 b = 1 for i

from 2 to n: c = a + b a = b b = c return b

https://www.geeksforgeeks.org/c-program-for-tower-of-hanoi/
https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/

A recursive algorithm is an algorithm that invokes itself during execution with a

reduced version of itself, as it proceeds by reducing a problem to the same

problem with smaller input. A recursive algorithm consists of the base case and

the general case.

	Tutorial N 1

