

Exercice 01

1) Define the process of recurcivity in algorithmcs.

The process in which a function calls itself directly or indirectly is called

recursion and the corresponding function is called a recursive function.

 A recursive algorithm takes one step toward solution and then

recursively call itself to further move. The algorithm stops once we

reach the solution.

 Since called function may further call itself, this process might

continue forever. So, it is essential to provide a base case to

terminate this recursion process.

2) Why is recursion needed in algorithmics?

Solution 01

1. Define the process of recurcivity in algorithmcs.

The process in which a function calls itself directly or indirectly is called

recursion and the corresponding function is called a recursive function.

 A recursive algorithm takes one step toward solution and then

recursively call itself to further move. The algorithm stops once we

reach the solution.

 Since called function may further call itself, this process might

continue forever. So it is essential to provide a base case to

terminate this recursion process.

2. Need of Recursivity

 Recursivity helps in logic building. Recursive thinking helps in solving

complex problems by breaking them into smaller subproblems.

Tutorial N°1

 Recursive solutions work as a a basis for Dynamic Programming and

Divide and Conquer algorithms.

 Certain problems can be solved quite easily using recursion like:

a) Towers of Hanoi (TOH),

b) Inorder/Preorder/Postorder Tree Traversals,

c) DFS of Graph, etc.

Exercice 03

a) We ask you writing an algorithm that calculate a Fibonacci sequence.

b) Translate the written algorithm in C language.

Explanation:

Each number in the Fibonacci sequence is the sum of the two preceding numbers:

F(n) = F(n-1) + F(n-2) with base cases F(0) = 0 and F(1) = 1.

Solution

(n): if n <= 0: return 0 else if n == 1: return 1 a = 0 b = 1 for i from 2 to n: c = a + b a = b b = c return b

Algorithm Fibonacci;

Var n : integer;

Begin

 Read (n) ;

:= 6; { Exemple : calcul du 6ème nombre de Fibonacci }

writeln('Fibonacci(', n, ') = ', Fibonacci(n)); readln; end.

<= 0: return 0 else if n == 1: return 1 a = 0 b = 1 for i

from 2 to n: c = a + b a = b b = c return b

https://www.geeksforgeeks.org/c-program-for-tower-of-hanoi/
https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/

A recursive algorithm is an algorithm that invokes itself during execution with a

reduced version of itself, as it proceeds by reducing a problem to the same

problem with smaller input. A recursive algorithm consists of the base case and

the general case.

	Tutorial N 1

