

BADJI MOKHTAR UNIVERSITY FACULTY OF ECONOMICS AND MANAGEMENT SCIENCES Department: Financial Sciences

Exercises Serie N03. Data Analysis, Statistics, and Applications

Level: L3 Instructor: Dr. Soumaya Allaoui

Exercise 1:

- 1. What is the main objective of Principal Component Analysis (PCA)?
- 2. How does PCA help in dimensionality reduction?
- 3. What are principal components, and how are they ordered?
- 4. What is the indicator of association between quantitative variables?
- 5. What is the role of eigenvalues and eigenvectors in PCA?
- 6. When should we apply the operations of centering and scaling to the data before applying PCA?

Exercise 2:

As a manager, you aim to understand how the climatic characteristics of cities influence consumer behavior and local needs. The following data represents precipitation (P, in cm), maximum temperatures (t_{max}), and minimum temperatures (t_{min}), in ($^{\circ}$ C) recorded in various cities in 2024:

	p	tmax	tmin
Ajaccio	12.04	23.7	5.9
Brest	17.18	15.5	-1.8
Dunkerque	11.83	13.1	2.8
Nancy	6.23	13.5	-2.4
Nice	16.99	21.1	7.2
Toulouse	3.87	20.3	-0.9

Questions

- 1. Calculate the statistics (mean, variance, and standard deviation) of P, tmax, and tmin.
- 2. Calculate the dispersion matrix corresonding to this problem statement.
- 3. Calculate the correlation matrix and , and then comment on the result.

We aim to study Principale Composent Analysis of the given problem statement.

- 1. Compute the variances (eigenvalues) of the principal components for this problem statement.
- 2. Deduce the total variance (inertia) in this Principal Component Analysis (PCA).
- 3. Determine the percentage of variance explained by each principal component.
- 4. Based on this, decide how many dimensions should be retained.
- 5. Find the normalized eigenvector corresponding to the first principal component.