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INTRODUCTION

PCA is a useful statistical technique that has
found application in fields such as face
recognition and image compression, and is a
common technique for finding patterns in data
of high dimension.

Before getting to a description of PCA, this
tutorial first infroduces mathematical concepts
that will be used in PCA. It covers standard
deviation, covariance, eigenvectors and
eigenvalues.

This background knowledge is meant to make
the PCA section very straightforward.




MATHEMATICAL
FOUNDATIONS

Statistics

Statistics revolves around the
fundamental concept of analyzing
large sets of data to uncover
relationships between individual data
points. In this context, | will explore
several key measures that can be
applied to a dataset and discuss what
insights they provide about the data as
a whole.



The mean
Center

The mean, often referred to as the 7 5
average, is one of the most commonly '

used measures in statistics.
It is calculated by adding up all the
values in a dataset and then dividing

that total by the number of values.
The mean provides a central value that 3 6 9 1 2

represents the overall distribution of the

orexpocied vavewmnneser - Mean=(3+6+9+12)/4

SN Mean=17.5



unfortunately, the mean doesn’t tell us
a lot about the data except for a sort /\
of middle point. For example, these

two data sets have exactly the same
mean (10), but are obviously quite
different:

(081220 and[891112]

So what is different about these two
sefse

It is the spread of the data that is
different.

«— Narrow distribution

<« Broad distribution




The Standard Deviation (SD)

The Standard Deviation (SD) of a data
set is a measure of how spread out
the data is.

In simple terms, the SD is the average
distance between each data point
and the mean of the dataset.

The formula for the population standard deviation is:

U—d%Z(mf—p)z

‘ And for the sample standard deviation:

Where:

e I; = each individual data point
e L = population mean
e T =sample mean

e 1 = number of data points




The way to calculate it is to compute the squares of the distance from each data point
to the mean of the set, add them all up, divide by n — 1 (or n) , and take the positive

square root
Set 1:

Note: Variance is another measure of the spread of data in @
data seft. In fact it is almost identical to the standard deviation.

X (X -X) (X-X)°
0 -10 100
8 -2 4
12 2 4
20 10 100
Total 208
Divided by (n-1) 69.333
Square Root 8.3206

Set 2:

X, (X; - X) (X;—X)?
8 -2 4
9 -1 1
11 1 1
12 4
Total 10
Divided by (n-1) 3.333
Square Root 1.8257
2 Z(x—p)?




. Covariance Formula For Population
Covariance

Standard deviation and variance are measures oy, T
that operate on a single dimension of data.

This means that if your dataset has multiple Cov(XyY) =
dimensions (or variables), you can only compute

the standard deviation or variance for each

dimension independently, without considering

how the dimensions interact.

However, in many cases, it's important to Covariance Formula For Sample

understand how two dimensions vary together for
example, how a change in one variable might
relate to changes in another.

S (- X))

n-1

Cov(XY) =
This is where covariance comes in.




Covariance measures the degree to
which two variables change together.

COVARIANCE
A positive covariance indicates that
the variables tend to increase or e —— p— p—————
decrease together, while a negative ¢ .
covariance means that as one ¢ 4
increases, the other tends fo ! . ¢ ", ¢
decrease. + Cateonn . !

L L : +

An interesting property of covariance ‘ ¢ . ' +
is that when you compute the ! . ¢
covariance of a variable with itself,
you get the variance.

Large Negative Nearly Zero Large Positive
In this sense, variance is a specidal Covariance Covariance Covariance

case of covariance.



Correlation
> (xi - %) (yi - g)

While covariance tells us how two variables

change together, it doesn’t give us a sense o \/(Z(xi - 32)2) (Z(gi - g)z)
of the strength or consistency of that | o
relationship, especially because its value Where, S5 = STepeianssestadioh

depends on the scale of the variables. To G,, —> Population Covariance

address this, we use correlation. - |
X,Y — Population Mean

Correlation is a standardized version of

covariance that measures both the strength S S Gl - XY (G- T)
and direction of a linear relationship F 3 ﬁ .

between two variables. It is calculated by O 72 = TA
dividing the covariance by the product of \/(Z(x' x)>(z(g' v)
the standard deviations of the two variables. Where, S,:S, = Sample Standard Deviation

Sw —>» Sample Covariance

5(_, Y = SampleMean



The result is a value called the correlation coefficient, usually denoted as r (or p), which

always falls between -1 and 1.
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Note: Correlation provides a unit-less measure, allowing you to easily compare the strength of

relationships between different pairs of variables, regardless of their original units of measurement.







The covariance Matrix

Recall that covariance is always measured
pbetween 2 dimensions. If we have a data
set with more than 2 dimensions, there is
more than one covarionce measurement
that can be calculated.

The covariance matrix is a square matrix that
summarizes the covariances between each
pair of variables in the dataset.

Each element in the matrix at position(i, j)
represents the covariance between

variable i and variable j.

Example structure of a 3-variable covariance matrix

V ar(xy)

-Cov(Xp, Xq)

VHI(XI)

E: CUV(XQ,Xl)
Cov(X3, X1) Cov(X3, Xy)

Cov(xq, Xp)

Var(xp) -

COV(Xl, Xg) CUV(XL X?)
VHI'(XQ)

CUV(XQ, Xg)
V&I‘(Xg)



Eigenvectors

AV= AV
ST

Matrix

Eigenvector

Eigenvalue Eigenvector

Eigenvectors and eigenvalues are fundamental concepts
in linear algebra, particularly in the analysis of linear
transformations. Given a square matrix A, an eigenvector is
a non-zero vector v that changes only in magnitude (not
in direction) when A is applied to it.

Mathematically, this is expressed as Av = Av, where Ais a
scalar known as the eigenvalue corresponding to the
eigenvector v.

The eigenvalue represents the factor by which the
eigenvector is stretched or compressed during the
transformation. These quantities provide deep insight into
the structure and behavior of linear systems, making them
essential in numerous scientific fields including physics
(e.g., qguantum mechanics), engineering (e.g., vibrations
and stability analysis), data science (e.g., principal
component analysis), and machine learning. Eigenvectors
indicate the invariant directions under a fransformation,
while eigenvalues quantify the effect of the transformation
along those directions.



PCA ALGORITHM
STEPS

Principal Components Analysis (PCA)

What is it? It is a way

of identifying patterns in data, and expressing the
data in such a way as to highlight their similarifies
and differences. Since patterns in data can be

hard to find in data of high dimension, where the
luxury of graphical representation is not available,
PCA is a powerful tool for analysing data.

The other main advantage of PCA is that once you
have found these patterns in the data, and you
compress the datq, ie. by reducing the number of
dimensions, without much loss of information




PCA

Principal Component Analysis (PCA)

Is a common statistical technique for
identifying and re-referencing the data
by linear mapping, which fransforms a
number of possibly correlated variables
into a smaller number of uncorrelated
variables known as principal
components.

"mauvaises" My
: photos bonnie" photo



https://www.sciencedirect.com/topics/engineering/principal-components
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Method
Step 1: Get some data

In my simple example, | am
going to use my own made-
up data set. It's only got 2
dimensions, and the reason
why | have chosen this is so
that | can provide plots of
the data to show what the
PCA analysis is doing at
each step.

Pa
T

—

Original PCA data

' " /PCAdatadat" +

.............................................................................................................................................

Data =

LY
25|24
05|07
22129
19|22
31130
23| 27




Method

Step 2: Subtract the mean

-1.31

For PCA to work properly, you have

to subtract the mean from each of 39
the data dimensions. The mean 09
subtracted is the average across .
each dimension. So, all the x values Dataﬂdjust — 17290
have x(the mean of the x values of '

all the data points) subtracted, and 49
all the y values have y subtracted

from them. This produces a data set 19
whose mean is zero. - 81

X.=X—-X

-1.21
99
29
1.09
79
-.31



Step 3: Calculate the covariance matrix
(or correlation matrix)

Calculate the covariance matrix is done in exactly

the same way as was discussed before. Var(xy) ... Cov(xq, Xp)
Since the data is 2 dimensional, the Z:

covariance matrix will be 2 x 2. So give you :

the result: -Cov(Xy, X1) . V ar(x;)

[ 616555556 615444444
COU=\ 615444444 .T16555556

1
»=—-XI'X
n Cc “*C



The calculation of the correlation matrix
involves first standardizing the dataset to
ensure that each variable has a mean of
zero and a standard deviation of one.

X — X, 7= —
7 = g
o

This step removes the influence of differing
scales or units across variables, making
them comparable.

STANDARDIZATION

0=1




Once standardization is complete, the correlation
matrix is computed by multiplying the transpose
of the standardized data matrix by the matrix
itself and dividing the result by n.

1
R=-717
n Cov (x,y)

. . . : Correlation =
The resulting matrix contains Pearson correlation oX * Oy

coefficients, where each element represents the
linear relationship between a pair of variables,
ranging from -1 (perfect negative correlation) to
+ 1 (perfect positive correlation), with 0 indicating
no linear correlation. The diagonal elements of
the matrix are always equal to 1, as each
variable is perfectly correlated with itself.




In Principal Component Analysis (PCA), the choice between using the covariance matrix
or the correlation matrix depends on the nature and scale of the variables in the dataset.
When the variables are measured on the same scale and in the same units, the
covariance maitrix is typically used, as it reflects the actual variances and covariances
between variables. This approach preserves the original magnitudes of variability and
emphasizes directions in the data space where the absolute variance is maximized.
However, when the variables differ in scale or units—for example, when one variable is
measured in kilograms and another in meters—the correlation matrix becomes more
appropriate. The correlation matrix is computed from standardized variables, ensuring
that each variable contributes equally to the analysis regardless of its original scale. This
standardization process makes PCA more robust to scale differences and focuses on the
structure of relationships among variables rather than their absolute variances. Thus, the
correlation matrix is used when equal weighting of variables is desired, while the
covariance maitrix is preferred when maintaining the true variances is important.



Step 4. Calculate the eigenvectors and
eigenvalues of the covariance
Matrix (or correlation matrix )

Since the covariance matrix is square, we ‘
()R
can calculate the eigenvectors and cigenvalues = (49083398
. . | igenvalues =
eigenvalues for this matrix. 128402771

These are rather important, as they tell us
useful information about our data. In the
meantime, here are the eigenvectors and
eigenvalues:

—. 135178626 —.6?7873399)

”g”"’”ﬁ“””:( BTIRT3390 —. 735178636




Step 5: Choosing components and
forming a feature vector 1.5

Here is where the notfion of data compression
and reduced dimensionality comes into if. If
you look at the eigenvectors and eigenvalues
from the previous section, you will notice that
the eigenvalues are quite different values. In
fact, it turns out that the eigenvector with the 0
highest eigenvalue is the principle component

of the data set.

0.5

0.5

In our example, the eigenvector with the larges
eigenvalue was the one that pointed -1
down the middle of the data. It is the most
significant relationship between the data
dimensions.

5, "F’C.ll\dataadjll.lst.dat“ +
(-.740682469/.671855252)*x -------
(-.671855252/-.740682469)"x -------~




In general, once eigenvectors are found from the covariance matrix, the next step
is to order them by eigenvalue, highest to lowest.

This gives you the components in order of significance. Now, if you like, you can
decide to ignore the components of lesser significance. You do lose some
information, but if the eigenvalues are small, you don't lose much.

If you leave out some components, the final data set will have less

dimensions than the original. To be precise, if you originally have n dimensions in
your data, and so you calculate n eigenvectors and eigenvalues, and then you
choose only the first p eigenvectors, then the final data set has only p dimensions.



Sort the eigenvalues in descending order: 1| = 1> = ... = A,,.
Decide how many principal components to retain based on the sorted eigenvalues using one of these methods:
1. Variance Explained Criterion : (most recommended approach in theory)

- Calculate Total Variance : The total variance in the dataset is given by: Total Variance = E{?:l Aj.
- Calculate Proportion of Variance Explained: The proportion of variance explained by each principal

component I is:

] . : . A; A;
Proportion of Variance for PC; = L = —_—
Total Variance 1 A
- Calculate Cumulative Explained Variance : The cumulative explained variance for the first \(k\) principal

components is:

- - . - A-
Cumulative Explained Variance, = E’;‘:l = I N
=1 “%J
This can also be expressed as:
k
' ) _ F oA
Cumulative Explained Variance, = E’:—];
Jf:] d .-F

- Choose the number of components where the cumulative explained variance reaches a satisfactory
threshold (commonly 80% to 90%).



Kaiser Criterion : Retain components
with eigenvalues greater than . This
rule is based on the idea that each

component should explain at least as . ‘
much variance as a single original 677873399

variable. Components with _ 735178656
eigenvalues less than 1 contribute less

information than one of the original

variables and are often discarded.

Create a matrix Vof the selected eigenvectors
(principal components). This matrix will be used to
transform the original data.



Step 6: Deriving the new data set

Transtormed Data (Single eigenvector)

This the final step in PCA, and is also the

: T

easiest. Once we have chosen the

components (eigenvectors) that we -.827970186

wish to keep in our data and formed a 1.77758033

feature vector, we simply take the -002197494

transpose of the vector and multiply it |

on the left of the original data set, -.274210416

transposed. -1.67580142
-.912949103
0991094375
1.14457216
438046137

1.22382056




2. Project the original data onto the new feature space by multiplying the centered data matrix by the matrix of
selected eigenvectors. This gives you the principal component scores.

C=2XV or (C=2ZV)

where:

C:is the matrix of principal component scores.

X or (Z):is the centered (or centred and reduced) data matrix.

V:is the matrix of selected eigenvectors.

3. Evaluate Component Contributions: Look at the loadings of each variable on the principal components to
understand which variables contribute most to each component.
4. Perform Further Analysis: Depending on your goals, you can use the principal component scores for various

analyses, such as clustering, regression, or visualization, while potentially reducing the dimensionality of the

dataset.



THANK YOU




