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INTRODUCTION
PCA is a useful statistical technique that has 

found application in fields such as face 

recognition and image compression, and is a 

common technique for finding patterns in data 

of high dimension.

Before getting to a description of PCA, this 

tutorial first introduces mathematical concepts 

that will be used in PCA. It covers standard 

deviation, covariance, eigenvectors and 

eigenvalues. 

This background knowledge is meant to make 

the PCA section very straightforward.



MATHEMATICAL 
FOUNDATIONS

Statistics

Statistics revolves around the 

fundamental concept of analyzing 

large sets of data to uncover 

relationships between individual data 

points. In this context, I will explore 

several key measures that can be 

applied to a dataset and discuss what 

insights they provide about the data as 

a whole.



The mean, often referred to as the 

average, is one of the most commonly 

used measures in statistics. 

It is calculated by adding up all the 

values in a dataset and then dividing 

that total by the number of values. 

The mean provides a central value that 

represents the overall distribution of the 

data, giving you a sense of the “typical” 

or “expected” value within the set.
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unfortunately, the mean doesn’t tell us 

a lot about the data except for a sort 

of middle point. For example, these 

two data sets have exactly the same 

mean (10), but are obviously quite 

different:

So what is different about these two 

sets? 

It is the spread of the data that is 

different.



The Standard Deviation (SD)

The Standard Deviation (SD) of a data 

set is a measure of how spread out 

the data is.

In simple terms, the SD is the average 

distance between each data point 

and the mean of the dataset.



The way to calculate it is to compute the squares of the distance from each data point 

to the mean of the set, add them all up, divide by 𝑛 − 1 (𝑜𝑟 𝑛) , and take the positive 

square root

Note: Variance is another measure of the spread of data in a 

data set. In fact it is almost identical to the standard deviation.



Covariance

Standard deviation and variance are measures 

that operate on a single dimension of data. 

This means that if your dataset has multiple 

dimensions (or variables), you can only compute 

the standard deviation or variance for each 

dimension independently, without considering 

how the dimensions interact.

However, in many cases, it's important to 

understand how two dimensions vary together for 

example, how a change in one variable might 

relate to changes in another. 

This is where covariance comes in.



Covariance measures the degree to 

which two variables change together.

A positive covariance indicates that 

the variables tend to increase or 

decrease together, while a negative 

covariance means that as one 

increases, the other tends to 

decrease.

An interesting property of covariance 

is that when you compute the 

covariance of a variable with itself, 

you get the variance. 

In this sense, variance is a special 

case of covariance.



Correlation

While covariance tells us how two variables 

change together, it doesn’t give us a sense 

of the strength or consistency of that 

relationship, especially because its value 

depends on the scale of the variables. To 

address this, we use correlation.

Correlation is a standardized version of 

covariance that measures both the strength

and direction of a linear relationship 

between two variables. It is calculated by 

dividing the covariance by the product of 

the standard deviations of the two variables.



The result is a value called the correlation coefficient, usually denoted as 𝑟 (or 𝜌), which 

always falls between -1 and 1.

Note: Correlation provides a unit-less measure, allowing you to easily compare the strength of 

relationships between different pairs of variables, regardless of their original units of measurement.



MATRIX ALGEBRA

See chapter 01



The covariance Matrix

Recall that covariance is always measured 

between 2 dimensions. If we have a data 

set with more than 2 dimensions, there is 

more than one covariance measurement 

that can be calculated.

The covariance matrix is a square matrix that 

summarizes the covariances between each 

pair of variables in the dataset. 

Each element in the matrix at position(𝑖, 𝑗)
represents the covariance between

variable 𝒊 and variable 𝒋.

Example structure of a 3-variable covariance matrix



Eigenvectors and eigenvalues are fundamental concepts 
in linear algebra, particularly in the analysis of linear 

transformations. Given a square matrix 𝐴, an eigenvector is 

a non-zero vector 𝒗 that changes only in magnitude (not 

in direction) when 𝐴 is applied to it. 

Mathematically, this is expressed as 𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣 , where 𝜆 is a 

scalar known as the eigenvalue corresponding to the 
eigenvector 𝒗. 

The eigenvalue represents the factor by which the 

eigenvector is stretched or compressed during the 

transformation. These quantities provide deep insight into 

the structure and behavior of linear systems, making them 

essential in numerous scientific fields including physics 

(e.g., quantum mechanics), engineering (e.g., vibrations 

and stability analysis), data science (e.g., principal 

component analysis), and machine learning. Eigenvectors 

indicate the invariant directions under a transformation, 

while eigenvalues quantify the effect of the transformation 

along those directions.

Eigenvectors



PCA  ALGORITHM 
STEPS 

What is it? It is a way

of identifying patterns in data, and expressing the 

data in such a way as to highlight their similarities 

and differences. Since patterns in data can be 

hard to find in data of high dimension, where the 

luxury of graphical representation is not available, 

PCA is a powerful tool for analysing data.

The other main advantage of PCA is that once you 

have found these patterns in the data, and you 

compress the data, ie. by reducing the number of 

dimensions, without much loss of information

Principal Components Analysis (PCA)



PCA

Principal Component Analysis (PCA)

is a common statistical technique for 

identifying and re-referencing the data 

by linear mapping, which transforms a 

number of possibly correlated variables 

into a smaller number of uncorrelated 

variables known as principal 

components.

https://www.sciencedirect.com/topics/engineering/principal-components








Method

Step 1: Get some data

In my simple example, I am 

going to use my own made-

up data set. It’s only got 2

dimensions, and the reason 

why I have chosen this is so 

that I can provide plots of 

the data to show what the 

PCA analysis is doing at 

each step.



Method

Step 2: Subtract the mean

For PCA to work properly, you have 

to subtract the mean from each of 

the data dimensions. The mean 

subtracted is the average across 

each dimension. So, all the 𝑥 values

have ҧ𝑥(the mean of the 𝑥 values of 

all the data points) subtracted, and 

all the 𝑦 values have ത𝑦 subtracted 

from them. This produces a data set 

whose mean is zero.

𝑋𝑐 = 𝑋 − ത𝑋



Step 3: Calculate the covariance matrix 

(or correlation matrix)

Calculate the covariance matrix is done in exactly 

the same way as was discussed before. 

Since the data is 2 dimensional, the 

covariance matrix will be 2 × 2. So give you 

the result:

Σ=

Σ =
1

𝑛
𝑋𝑐
𝑇𝑋𝑐



The calculation of the correlation matrix 

involves first standardizing the dataset to 

ensure that each variable has a mean of 

zero and a standard deviation of one.

Z =
𝑋 − 𝑋𝑐

𝜎
This step removes the influence of differing 

scales or units across variables, making 

them comparable.



Once standardization is complete, the correlation 

matrix is computed by multiplying the transpose 

of the standardized data matrix by the matrix 

itself and dividing the result by 𝑛.

The resulting matrix contains Pearson correlation 

coefficients, where each element represents the 

linear relationship between a pair of variables, 

ranging from – 𝟏 (perfect negative correlation) to 

+ 𝟏 (perfect positive correlation), with 𝟎 indicating 

no linear correlation. The diagonal elements of 

the matrix are always equal to 1, as each 

variable is perfectly correlated with itself. 

R =
1

𝑛
𝑍𝑇𝑍



In Principal Component Analysis (PCA), the choice between using the covariance matrix 

or the correlation matrix depends on the nature and scale of the variables in the dataset. 

When the variables are measured on the same scale and in the same units, the 

covariance matrix is typically used, as it reflects the actual variances and covariances

between variables. This approach preserves the original magnitudes of variability and 

emphasizes directions in the data space where the absolute variance is maximized. 

However, when the variables differ in scale or units—for example, when one variable is 

measured in kilograms and another in meters—the correlation matrix becomes more 

appropriate. The correlation matrix is computed from standardized variables, ensuring 

that each variable contributes equally to the analysis regardless of its original scale. This 

standardization process makes PCA more robust to scale differences and focuses on the 

structure of relationships among variables rather than their absolute variances. Thus, the 

correlation matrix is used when equal weighting of variables is desired, while the 

covariance matrix is preferred when maintaining the true variances is important.



Step 4: Calculate the eigenvectors and 

eigenvalues of the covariance

Matrix (or correlation matrix )

Since the covariance matrix is square, we 

can calculate the eigenvectors and 

eigenvalues for this matrix. 

These are rather important, as they tell us 

useful information about our data. In the 

meantime, here are the eigenvectors and

eigenvalues:



Step 5: Choosing components and 

forming a feature vector

Here is where the notion of data compression 

and reduced dimensionality comes into it. If 

you look at the eigenvectors and eigenvalues 

from the previous section, you will notice that 

the eigenvalues are quite different values. In 

fact, it turns out that the eigenvector with the 

highest eigenvalue is the principle component 

of the data set.

In our example, the eigenvector with the larges 

eigenvalue was the one that pointed

down the middle of the data. It is the most 

significant relationship between the data

dimensions.



In general, once eigenvectors are found from the covariance matrix, the next step

is to order them by eigenvalue, highest to lowest. 

This gives you the components in order of significance. Now, if you like, you can 

decide to ignore the components of lesser significance.  You do lose some 

information, but if the eigenvalues are small, you don’t lose much.

If you leave out some components, the final data set will have less

dimensions than the original. To be precise, if you originally have 𝑛 dimensions in

your data, and so you calculate 𝑛 eigenvectors and eigenvalues, and then you 

choose only the first 𝑝 eigenvectors, then the final data set has only 𝑝 dimensions.





Kaiser Criterion : Retain components 

with eigenvalues greater than . This 

rule is based on the idea that each

component should explain at least as 

much variance as a single original 

variable. Components with

eigenvalues less than 1 contribute less 

information than one of the original 

variables and are often discarded.

Create a matrix 𝑉of the selected eigenvectors 

(principal components). This matrix will be used to 

transform the original data.



This the final step in PCA, and is also the 

easiest. Once we have chosen the 

components (eigenvectors) that we 

wish to keep in our data and formed a 

feature vector, we simply take the 

transpose of the vector and multiply it 

on the left of the original data set,

transposed.

Step 6: Deriving the new data set



𝑪 = 𝜮𝑽 𝒐𝒓 (𝑪 = 𝒁𝑽)

𝑪: 𝒊𝒔 𝒕𝒉𝒆𝒎𝒂𝒕𝒓𝒊𝒙 𝒐𝒇 𝒑𝒓𝒊𝒏𝒄𝒊𝒑𝒂𝒍 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒔𝒄𝒐𝒓𝒆𝒔.

𝜮 𝒐𝒓 𝒁 : 𝒊𝒔 𝒕𝒉𝒆 𝒄𝒆𝒏𝒕𝒆𝒓𝒆𝒅 (𝒐𝒓 𝒄𝒆𝒏𝒕𝒓𝒆𝒅 𝒂𝒏𝒅 𝒓𝒆𝒅𝒖𝒄𝒆𝒅) 𝒅𝒂𝒕𝒂𝒎𝒂𝒕𝒓𝒊𝒙.

𝑽: 𝒊𝒔 𝒕𝒉𝒆𝒎𝒂𝒕𝒓𝒊𝒙 𝒐𝒇 𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅 𝒆𝒊𝒈𝒆𝒏𝒗𝒆𝒄𝒕𝒐𝒓𝒔.
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