

Homework on CPA N01. Data Analysis, Statistics, and Applications

Level: L3 Instructor: Dr. Soumaya Allaoui

Exercise 1 : Introduction to Centering, Scaling, and PCA Analysis:

The following data represents the dollar sales of different product categories A,B,C across three regions R_1, R_2, R_3 :

$\operatorname{Production}\left(\operatorname{PR}\right)$	Region R_1	Region R_2	Region R_3
A	200	220	240
eta	150	180	190
C	300	310	320

Let X represent the data matrix corresponding to the above table:

 $X = \begin{bmatrix} 200 & 220 & 240 \\ 150 & 180 & 190 \\ 300 & 310 & 320 \end{bmatrix}.$

Answer the following questions to explore the concepts of centering, scaling, and preparing the data for Principal Component Analysis (PCA):

1. Calculate the *gravity center* g of the data matrix X(g) is the vector of column means of X

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}.$$

2. Compute the vector σ , where each element σ_i is the standard deviation of the column X_i .

$$\sigma_i = \sqrt{\frac{1}{n} \sum_{k=1}^n (X_{ki} - g_i)^2}.$$

3. Construct the weighted matrix $D(1/\sigma)$, where:

$$D(1/\sigma) = \begin{bmatrix} 1/\sigma_1 & 0 & \cdots & 0\\ 0 & 1/\sigma_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & 1/\sigma_p \end{bmatrix}$$

- 4. Calculate Z, the *centered version* of $X: Z = X \mathbf{1}_n g^{\top}$, where $\mathbf{1}_n$ is an $n \times 1$ vector of ones. What is the mean of each column Z_i of the matrix Z?
- 5. Compute Z^* , the *centered and reduced version* of X: $Z^* = ZD(1/\sigma),$

or equivalently:

$$Z^* = (X - \mathbf{1}_n g^{\mathsf{T}}) D(1/\sigma).$$

- 6. Deduce the variance of each column Z_{i} of Z^* .
- 7. Calculate Σ , the covariance matrix of $Z: \Sigma = \frac{1}{n} Z^{\top} Z$.
- 8. Recall the steps of Principal Component Analysis (PCA) based on this situation.

Exercise 2: Perform a Principal Component Analysis (PCA)

On the following matrix, starting from its dispersion matrix (data are centered but not scaled):

(2	2)
6	2
6	4
(10)	4)

Question 2

Perform a Principal Component Analysis (PCA)

Hint:

Tasks:

- 1. Compute the covariance matrix of the data.
- 2. Calculate the eigenvalues and eigenvectors of the covariance matrix.
- 3. Determine the principal components and interpret their directions.
- 4. Project the original data onto the new principal component axes.