TD revision

REVISION 2024 /2025

Table of contents

1 -

Revisi	on	3
1. Qı	uiz: Exercise1	3
2. Qi	uiz: Exercise 2	3
3. Qı	uiz: Exercise3	4

I Revision

1. Quiz: Exercise1

Consider the following linear transformation:

$$T: \mathbb{R}^3 \to \mathbb{R}^3, \quad T\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 2x\\ x+y\\ x+z \end{pmatrix}$$

Question

- Find the matrix representation of the linear transformation T.
- Find the eigenvalues of T.
- Find the eigenvectors corresponding to each eigenvalue.

```
Compute the image of the vector \begin{pmatrix} 1\\1\\1 \end{pmatrix} under T.
```

2. Quiz: Exercise 2

The variances and covariances are given as follows:

 $V(X)=4,\ V(Y)=2,\ V(Z)=4,\ \mathrm{COV}(X,Y)=1,\ \mathrm{COV}(X,Z)=0,\ \mathrm{COV}(Y,Z)=1$

Question 1

1. From the given informations, form the covariance matrix.

Question 2

Find the eigenvalues, then organize them in a table with percentages and cumulative percentages.

Question 3

3. What is the percentage of variance explained by each principal component?

Question 4

4. Based on the Kaiser criterion, how many principal components should be retained?

Question 5

5. Find the eigenvector corresponding to λ_2 . then deduce the normalized eigenvector corresponding to λ_2 ;

Question 6

Calculate the individuals components.

3. Quiz: Exercise3

Through applying the Principal Component Analysis (PCA) method to a data table X_{43} consisting of 3 *homogeneous* variables observed on 4 individuals, we obtained the following results, part of which is illustrated as follows:

Where g is the center of the individuals' cloud (gravity center), and F_2 are the coordinates of the individuals on the space spanned by the eigenvectors U_2 , corresponding to the largest two eigenvalues λ_1 and λ_2 in descending order.

Question

1. Complete the following blanks:

	(-1)	• • •)		(\cdots)		· · ·)		(```	
M =	0	0	0						(• • •)	
		1	Ŭ,	$X_{43} =$, V =		• • •		,
	• • •	-1				• • •						
	(• • •	0)		(· · ·)		()	
$I = \cdots, \lambda_1 = \cdots$												

Hint:

2. Explain how to complete the blanks above:

For the centered matrix M;

For the basic data matrix X_{43} ;

The variance-covariance matrix V;

For the total variance I;

For the first eigenvalue λ_1 .