Solution 1: (7pts)

Annual Coupon Payment = \$1,000 × 8% = \$80 0.5pt

Step 1: Present Value of Coupon Payments0.75pt

$$PV \ Coupouns = 80\left(\frac{1 - (1.06)^{-12}}{0.06}\right) = \$670.71$$

Step 2: Present Value of Face Value 0.75pt

$$PVface = \frac{1000}{(1.06)^{12}} = $497.02$$

Step 3: Add Both Values1pt

Part 2:

Yield to Maturity- Bond A:

$$YTM = \frac{coupon payement + \frac{Face value - Market price}{N}}{\frac{Per value + Market price}{2}} 0.5pt$$

Coupon payment= 1000 x 0.12=\$ 1200.5pt
$$YTM = \frac{120 + \frac{$1000 - $920}{6}}{\frac{$1000 + $920}{2}} = 0.13888 = 13.89\% 1pt$$

Yield to Call- Bond B:

$$YTC = \frac{\frac{coupon payement + \frac{Call price - Market price}{N}}{\frac{Call price + Market price}{2}}0.5pt$$

Coupon payment= 1000 x 0.09=\$ 900.5pt

$$YTC = \frac{90 + \frac{\$1050 - \$1120}{5}}{\frac{\$1050 + \$1120}{2}} = 0.07 = 7\%1pt$$

Solution 2 : (7pt) 1. calculating P₀: - D1= \$1.00 (Given) - D2 = \$1.20 (Given) - D3 = Year 2 × (1 + g₁) = \$1.20 × 1.20 = \$1.44 - D4 = \$1.44 × 1.06 = \$1.52 - D5 = \$1.52 × 1.06 = \$1.61 - D6 = Year 5 × (1 + g₂) = \$1.61 × 1.03 = \$1.65 (4 \rightarrow 0. 5 pt)

 g_2 3% (annually forever from year 6) R = 8%

> Discounting All Cash Flows to Present Value (10% discount rate for Years 1–5):

$$PV of D1 = \frac{Dt}{(1+r)^t}$$

*PV of D*1 = $\frac{\$1}{(1.10)}$ = \$0.90 PV D2=\$0.99; PV D3=\$1.08; PV D4=\$1.03 ;PV D5=\$0.99 **(5 x 0.25 pt)**

• Calculating the PV of Terminal value:

 $P5 = \frac{D6}{r-g} = \frac{D5(1+g)}{r-g} = \frac{1.61(1.03)}{(0.08-0.03)} = 330.75 \text{ pt}$ pv of terminal value = $\frac{p5}{(1+r)^n} = \frac{33}{(1.10)^5} = \20.49 0.5pt

instrict value (P0) = $\sum_{t=1}^{n} \frac{Dt}{(1+r)^{t}} + \frac{Pn}{(1+r)^{n}}$ **0.5 pt**

2. Current Market Price = \$18< Intrinsic Value = \$25.48

Since the intrinsic value is higher than the market price, the stock is considered undervalued. (0.5pt)

3. a. FCFE

FCFE = Net Income + Depreciation – Capital Expenditures – Change in Working Capital + Net Borrowing (0.75pt)

(FCFE) = 120 + 15 - 40 - (-10) + 5 = \$110 million (0.5pt)

b. Cost of Equity using CAPM

Market Return (Rm) = 5% of FCFE Rm= 5% × \$110 = 5.5% (0.25pt)

Cost of Equity (re) = $Rf + \beta \times (Rm - Rf)$ (0.5pt)

 $(re) = 3.2\% + 1.37 \times (5.5\% - 3.2\%) = 6.35\%$ (0.5pt)

Solution 3 :

 $\mathbf{1} \rightarrow \mathbf{B}$

- $2 \rightarrow B$
- $3 \rightarrow A$
- $4 \rightarrow D$
- $5 \rightarrow B$
- $6 \rightarrow B$