Badji Mokhtar University, Annaba Faculty of Economic, Commercial and Management Sciences Department of Financial and Accounting Science Duration: 1:30h

Exercise 01 (matrix algebra)

Let the three matrices be:

$$A = \begin{pmatrix} 4 & 2 \\ 6 & 3 \end{pmatrix} \quad , \quad B = \begin{pmatrix} -2 & -3 \\ -7 & 0 \end{pmatrix} \quad , \quad C = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$$

- 1- Compute: X = A + 3B 2C
- 2- If X is invertible, Calculate X^{-1} .

Exercise 02 (The Principal Components analysis)

The following table represents two car brands and the ratings given by four individuals to these brands (ratings range from 0 to 10, where a score of 10 indicates a very good rating for the brand, and 0 the opposite).

Individual	BMW	Citroën
А	9	4
В	4	8
С	8	6
D	5	7

- 1. Calculate the statistics of the above data variables.
- 2. Calculate the covariance matrix.
- 3. Calculate the correlation matrix, and then comment on it.
- 4. Calculate the variances (eigenvalues) of the principal components for this problem statement.
- 5. What is the percentage of variance explained by each principal component?
- 6. Find the normalized eigenvector corresponding to the first principal component.

Exercise 03 (Correspondence Analysis)

A survey was conducted among cinema-goers about a movie they watched, and they were asked to specify their age groups.

Using the Correspondence Analysis by SPSS get the following results.

Age Group	Age Group Excellent		Moderate	Weak	
16–24	41	48	49	69	
25–34	22	14	45	148	
35–44	28	12	65	170	
45–54	29	12	57	159	
55–64	26	6	26	122	
65–74	23	5	21	106	
75+	14	1	7	40	

	Evaluation								
Age	Excellent	Good	Moderate	Weak	Active Margin				
16-24	.198	.232	.237	.333	1.000				
25-34	.096	.061	.197	.646	1.000				
35-44	.102	.044	.236	.618	1.000				
45-54	.113	.047	.222	.619	1.000				
55-64	.144	.033	.144	.678	1.000				
65-74	.148	.032	.135	.684	1.000				
75+	.226	.016	.113	.645	1.000				
Mass	.134	.072	.198	.596					

Row Profiles

Summary

					Proportion of Inertia		Confidence Singular Value		
	Singular						Standard	Correlation	
Dimension	Value	Inertia	Chi Square	Sig.	Accounted for	Cumulative	Deviation	2	
1	.305	.093			.859	.859	.033	019-	
2	.115	.013			.123	.982	.026		
3	.044	.002			.018	1.000			
Total		.108	147.309	.000 ^a	1.000	1.000			

a. 18 degrees of freedom

		Score in D	imension		Contribution				
				1	Of Point to Inertia of Dimension		Of Dimension to Inertia of Point		
Age	Mass	1	2	Inertia	1	2	1	2	Total
16-24	.152	-1.294-	.091	.078	.834	.011	.998	.002	1.000
25-34	.168	.158	201-	.003	.014	.059	.457	.281	.739
35-44	.201	.194	350-	.005	.025	.215	.423	.522	.945
45-54	.188	.175	221-	.003	.019	.080	.586	.353	.939
55-64	.132	.332	.332	.006	.048	.126	.714	.271	.985
65-74	.114	.346	.398	.006	.045	.156	.654	.327	.981
75+	.045	.326	.947	.007	.016	.354	.221	.706	.927
Active Total	1.000			.108	1.000	1.000			

Overview Row Points^a

a. Symmetrical normalization

- 1. What is the nature or classification of these values?
- 2. What are the key purposes of applying Correspondence Analysis (CA) to this dataset?
- 3. From the row profiles table, find the average row vector (L_m), and the theoretical diagonal matrix for the average row.
- 4. Compute the distance between: (25-34) and L_m , (+75) and L_m .
- 5. Extract from the table of Overview Row Points the inertia values of row, and deduce the percentage contribution of each age group to the construction of the first axis.
- 6. Is there a correlation between the rows and columns? Justify your answer.