A. How to import datasets

To import a data from CSV document we use the function read csv from pandas library

On Python:

Import pandas as pd

Data=pd.read_csv('file.csv')

Remark: we use the same method to import Excel docs

B. How to remove data from pandas dataframe

To do it we use the function drop () and the parameter axis such axis=1 to remove a columns and axis=0 to remove lines

Remark: This is a **very common pattern** when preparing data for a machine learning model:

On Python:

X = data.drop('target', axis=1) X contains the features (inputs to the model)

y = data['target'] y contains the target variable (the output we want to predict)

C. How to predict using regression model on python:

Regression is a type **of supervised** machine learning used to **predict a continuous value**. Like: Predict someone's **salary** from their **age** and **experience**

The general linear regression formula is

$$\hat{y} = a_1 x_1 + a_2 x_2 + ... + a_n x_n + b$$

Where:

it the predicted value (for example, predicted salary)

 $X_1, X_2, ..., X_n$ the input features (for example, age and experience)

 $a_1, a_2, ..., a_n$: the coefficients (weights) learned by the model

b: the intercept (constant term)

The goal is to find a relationship between *input variables (features)* (age and experience) and *output variable (target)* (salary).

Steps:

- 1. Import the Libraries import pandas and sklearn
- 2. Create a Simple Dataset (CSV, EXCEL, txt,...)
- 3. Separate Inputs and Output X = what we use to predict and y = what we want to predict
- **4. Split the Data into:** Training set (to teach the model) and Test set (to check how good it is) to do so we use **train_test_split** function from **scikit-learn library**

On python:

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=42)

print("Training set size:", len(X_train))

print("Testing set size:", len(X_test))
```

Remark: the parameters:

- random state=1000 to use the same random state (same split) 1000 times
- len() is a function that means "length."
- test_size=0.3 Means that 30% of the samples go to the test set, and the remaining 70% go to training.

5. Create the Regression Model

we create a Linear Regression model.

On python:

```
from sklearn.linear_model import LinearRegression

model = LinearRegression()
```

6. Train the Model we train (fit) the model using our training data

```
(X_train).
```

On python:

```
model.fit(X_train, y_train)
print("Coefficients:", model.coef_)
print("Intercept:", model.intercept_)
```

7. **Make Predictions** we use the trained model to make predictions on the test data.

On python:

8. Evaluate the Model: we use Mean Squared Error (MSE) metric.

On python:

from sklearn.metrics import mean_squared_error

print("Mean Squared Error:", mse)

Remark Mean Squared Error measures **how far** your predictions are from the real values.

$$MSE = \frac{1}{n} \sum_{i=0}^{n} (y - \hat{y})^2$$

The smaller the MSE, the **better** your model fits the data.